Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.4.187

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions  

An, Ho-Myoung (Department of Electronics, Osan University)
Kim, Jooyeon (School of Electrical Electronics Engineering, Ulsan College)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.4, 2015 , pp. 187-189 More about this Journal
Abstract
A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.
Keywords
Low-temperature polycrystalline silicon (LTPS); Charge-trap flash (CTF); Thin film transistor (TFT); Schottky barrier (SB) junction; Ni-silicide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. H. Yeh, C. F. Weng, S. M. Sze, C. Y. Chang, and C. H. Lien, Appl. Phys. Lett., 90, 122111 (2007). [DOI: http://dx.doi.org/10.1063/1.2715443]   DOI
2 S. W. Jung, K. S. Jang, Y. J. Lee, Z. Jin, and J. S. Yi, Materials Science and Engineering: B, 167, 167 (2010). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.01.059]   DOI
3 C. K. Huang, W. E. Zhang, and C. H. Yang, IEEE Trans. Electron Devices, 45, 842 (1998). [DOI: http://dx.doi.org/10.1109/16.662789]   DOI
4 J. M. Larson and J. P. Snyder, IEEE Trans. Electron Devices, 53, 1048 (2006). [DOI: http://dx.doi.org/10.1109/TED.2006.871842]   DOI
5 M. Jang, Y. Kim, J. Shin, S. Lee, and K. Park, Appl. Phys. Lett., 84, 741 (2004). [DOI: http://dx.doi.org/10.1063/1.1645665]   DOI
6 M. Nishisaka, S. Matsumoto, and T. Asano, Jpn. J. Appl. Phys., 42, 2009 (2003). [DOI: http://dx.doi.org/10.1143/JJAP.42.2009]   DOI
7 R. T. Tung, Mater. Sci. Eng., 35, 1 (2001). [DOI: http://dx.doi.org/10.1016/S0927-796X(01)00037-7]   DOI
8 M. Zhang, W. Zhou, R. Chen, M. Wong, and H. S. Kwok, Microelectronics Reliability, 54, 30 (2014). [DOI: http://dx.doi.org/10.1016/j.microrel.2013.07.082]   DOI
9 S. W. Jung, S. H. Hwang, and J. Yi, Thin Solid Films, 517, 362 (2008). [DOI: http://dx.doi.org/10.1016/j.tsf.2008.08.045]   DOI