• Title/Summary/Keyword: SAR ADC

Search Result 61, Processing Time 0.028 seconds

Design of 10-bit 10MS/s Time-Interleaved Flash-SAR ADC Using Sharable MDAC

  • Do, Sung-Han;Oh, Seong-Jin;Seo, Dong-Hyeon;Lee, Juri;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.59-63
    • /
    • 2015
  • This paper presents a 10-bit 10 MS/s Time-Interleaved Flash-SAR ADC with a shared Multiplying DAC. Using shared MDAC, the total capacitance in the SAR ADC decreased by 93.75%. The proposed ADC consumed 2.28mW under a 1.2V supply and achieved 9.679 bit ENOB performance. The ADC was implemented in $0.13{\mu}m$ CMOS technology. The chip area was $760{\times}280{\mu}m^2$.

A 12b 100 MS/s Three-Step Hybrid Pipeline ADC Based on Time-Interleaved SAR ADCs

  • Park, Jun-Sang;An, Tai-Ji;Cho, Suk-Hee;Kim, Yong-Min;Ahn, Gil-Cho;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.189-197
    • /
    • 2014
  • This work proposes a 12b 100 MS/s $0.11{\mu}m$ CMOS three-step hybrid pipeline ADC for high-speed communication and mobile display systems requiring high resolution, low power, and small size. The first stage based on time-interleaved dual-channel SAR ADCs properly handles the Nyquist-rate input without a dedicated SHA. An input sampling clock for each SAR ADC is synchronized to a reference clock to minimize a sampling-time mismatch between the channels. Only one residue amplifier is employed and shared in the proposed ADC for the first-stage SAR ADCs as well as the MDAC of back-end pipeline stages. The shared amplifier, in particular, reduces performance degradation caused by offset and gain mismatches between two channels of the SAR ADCs. Two separate reference voltages relieve a reference disturbance due to the different operating frequencies of the front-end SAR ADCs and the back-end pipeline stages. The prototype ADC in a $0.11{\mu}m$ CMOS shows the measured DNL and INL within 0.38 LSB and 1.21 LSB, respectively. The ADC occupies an active die area of $1.34mm^2$ and consumes 25.3 mW with a maximum SNDR and SFDR of 60.2 dB and 69.5 dB, respectively, at 1.1 V and 100 MS/s.

Design of Timing Register Structure for Area Optimization of High Resolution and Low Power SAR ADC (고해상도 저전력 SAR ADC의 면적 최적화를 위한 타이밍 레지스터 구조 설계)

  • Min, Kyung-Jik;Kim, Ju-Sung;Cho, Hoo-Hyun;Pu, Young-Gun;Hur, Jung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, a timing register architecture using demultiplexer and counter is proposed to reduce the area of the high resolution SAR type analog to digital converter. The area and digital power consumption of the conventional timing register based on the shift register is drastically increased, as the resolution is increased. On the other hand, the proposed architecture results in reduction of the area and the power consumption of the error correction logic of the SAR ADC. This chip is implemented with 0.18 um CMOS process. The area is reduced by 5.4 times and the digital power consumption is minimized compared with the conventional one. The 12 bits SAR ADC shows ENOB of 11 bits, power consumption of 2 mW, and conversion speed of 1 MSPS. The die area is $1 mm{\times}1mm$.

Range-Scaled 14b 30 MS/s Pipeline-SAR Composite ADC for High-Performance CMOS Image Sensors

  • Park, Jun-Sang;Jeong, Jong-Min;An, Tai-Ji;Ahn, Gil-Cho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • This paper proposes a low-power range-scaled 14b 30 MS/s pipeline-SAR composite ADC for high-performance CIS applications. The SAR ADC is employed in the first stage to alleviate a sampling-time mismatch as observed in the conventional SHA-free architecture. A range-scaling technique processes a wide input range of 3.0VP-P without thick-gate-oxide transistors under a 1.8 V supply voltage. The first- and second-stage MDACs share a single amplifier to reduce power consumption and chip area. Moreover, two separate reference voltage drivers for the first-stage SAR ADC and the remaining pipeline stages reduce a reference voltage disturbance caused by the high-speed switching noise from the SAR ADC. The measured DNL and INL of the prototype ADC in a $0.18{\mu}m$ CMOS are within 0.88 LSB and 3.28 LSB, respectively. The ADC shows a maximum SNDR of 65.4 dB and SFDR of 78.9 dB at 30 MS/s, respectively. The ADC with an active die area of $1.43mm^2$ consumes 20.5 mW at a 1.8 V supply voltage and 30 MS/s, which corresponds to a figure-of-merit (FOM) of 0.45 pJ/conversion-step.

A Non-Calibrated 2x Interleaved 10b 120MS/s Pipeline SAR ADC with Minimized Channel Offset Mismatch (보정기법 없이 채널 간 오프셋 부정합을 최소화한 2x Interleaved 10비트 120MS/s 파이프라인 SAR ADC)

  • Cho, Young-Sae;Shim, Hyun-Sun;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.63-73
    • /
    • 2015
  • This work proposes a 2-channel time-interleaved (T-I) 10b 120MS/s pipeline SAR ADC minimizing offset mismatch between channels without any calibration scheme. The proposed ADC employs a 2-channel SAR and T-I topology based on a 2-step pipeline ADC with 4b and 7b in the first and second stage for high conversion rate and low power consumption. Analog circuits such as comparator and residue amplifier are shared between channels to minimize power consumption, chip area, and offset mismatch which limits the ADC linearity in the conventional T-I architecture, without any calibration scheme. The TSPC D flip-flop with a short propagation delay and a small number of transistors is used in the SAR logic instead of the conventional static D flip-flop to achieve high-speed SAR operation as well as low power consumption and chip area. Three separate reference voltage drivers for 4b SAR, 7b SAR circuits and a single residue amplifier prevent undesirable disturbance among the reference voltages due to each different switching operation and minimize gain mismatch between channels. High-frequency clocks with a controllable duty cycle are generated on chip to eliminate the need of external complicated high-frequency clocks for SAR operation. The prototype ADC in a 45nm CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 0.77LSB, with a maximum SNDR and SFDR of 50.9dB and 59.7dB at 120MS/s, respectively. The proposed ADC occupies an active die area of 0.36mm2 and consumes 8.8mW at a 1.1V supply voltage.

A 1V 200-kS/s 10-bit Successive Approximation ADC

  • Uh, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.483-485
    • /
    • 2010
  • A 200kS/s 10-bit successive approximation(SA) ADC with a rail-to-rail input range is proposed. The proposed SA ADC consists of DAC, comparator, and successive approximation register(SAR) logic. The folded-type capacitor DAC with the boosted NMOS switches is used to reduce the power consumption and chip area. Also, the time-domain comparator which uses a fully differential voltage-to-time converter improves the PSRR and CMRR. The SAR logic uses the flip-flop with a half valid window, it results in the reduction of the power consumption and chip area. The proposed SA ADC is designed by using a $0.18{\mu}m$ CMOS process with 1V supply.

  • PDF

A 10-bit 20-MS/s Asynchronous SAR ADC using Self-calibrating CDAC (자체 보정 CDAC를 이용한 10비트 20MS/s 비동기 축차근사형 ADC)

  • Youn, Eun-ji;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A capacitor self-calibration is proposed to improve the linearity of the capacitor digital-to-analog converter (CDAC) for an asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with 10-bit resolution. The proposed capacitor self-calibration is performed so that the value of each capacitor of the upper 5 bits of the 10-bit CDAC is equal to the sum of the values of the lower capacitors. According to the behavioral simulation results, the proposed capacitor self-calibration improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from -0.810/+0.194 LSBs and -0.832/+0.832 LSBs to -0.235/+0.178 LSBs and -0.227/+0.227 LSBs, respectively, when the maximum capacitor mismatch of the CDAC is 4%. The proposed 10-bit 20-MS/s asynchronous SAR ADC is implemented using a 110-nm CMOS process with supply of 1.2 V. The area and power consumption of the proposed asynchronous SAR ADC are $0.205mm^2$ and 1.25 mW, respectively. The proposed asynchronous SAR ADC with the capacitor calibration has a effective number of bits (ENOBs) of 9.194 bits at a sampling rate of 20 MS/s about a $2.4-V_{PP}$ differential analog input with a frequency of 96.13 kHz.

Architecture Improvement of Analog-Digital Converter for High-Resolution Low-Power Sensor Systems (고해상도 저전력 센서 시스템을 위한 아날로그-디지털 변환기의 구조 개선)

  • Shin, Youngsan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.514-517
    • /
    • 2018
  • In sensor systems, ADC (analog-to-digital converter) demands high resolution, low power consumption, and high signal bandwidth. Sigma-delta ADC achieves high resolution by high order structure and high over-sampling ratio, but it suffers from high power consumption and low signal bandwidth. SAR (successive-approximation-register) ADC achieves low power consumption, but there is a limitation to achieve high resolution due to process mismatch. This paper surveys architecture improvement of ADC to overcome these problems.

A 12 bit 750 kS/s 0.13 mW Dual-sampling SAR ADC

  • Abbasizadeh, Hamed;Lee, Dong-Soo;Yoo, Sang-Sun;Kim, Joon-Tae;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.760-770
    • /
    • 2016
  • A 12-bit 750 kS/s Dual-Sampling Successive Approximation Register Analog-to-Digital Converter (SAR ADC) technique with reduced Capacitive DAC (CDAC) is presented in this paper. By adopting the Adaptive Power Control (APC) technique for the two-stage latched type comparator and using bootstrap switch, power consumption can be reduced and overall system efficiency can be optimized. Bootstrapped switches also are used to enhance the sampling linearity at a high input frequency. The proposed SAR ADC reduces the average switching energy compared with conventional SAR ADC by adopting reduced the Most Significant Bit (MSB) cycling step with Dual-Sampling of the analog signal. This technique holds the signal at both comparator input asymmetrically in sample mode. Therefore, the MSB can be calculated without consuming any switching energy. The prototype SAR ADC was implemented in $0.18-{\mu}m$ CMOS technology and occupies $0.728mm^2$. The measurement results show the proposed ADC achieves an Effective Number-of-Bits (ENOB) of 10.73 at a sampling frequency of 750 kS/s and clock frequency of 25 MHz. It consumes only 0.13 mW from a 5.0-V supply and achieves the INL and DNL of +2.78/-2.45 LSB and +0.36/-0.73 LSB respectively, SINAD of 66.35 dB, and a Figures-of-Merit (FoM) of a 102 fJ/conversion-step.

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.