Browse > Article
http://dx.doi.org/10.7471/ikeee.2018.22.2.514

Architecture Improvement of Analog-Digital Converter for High-Resolution Low-Power Sensor Systems  

Shin, Youngsan (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University)
Lee, Seongsoo (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University)
Publication Information
Journal of IKEEE / v.22, no.2, 2018 , pp. 514-517 More about this Journal
Abstract
In sensor systems, ADC (analog-to-digital converter) demands high resolution, low power consumption, and high signal bandwidth. Sigma-delta ADC achieves high resolution by high order structure and high over-sampling ratio, but it suffers from high power consumption and low signal bandwidth. SAR (successive-approximation-register) ADC achieves low power consumption, but there is a limitation to achieve high resolution due to process mismatch. This paper surveys architecture improvement of ADC to overcome these problems.
Keywords
Sensor System; ADC; Sigma-Delta ADC; SAR-ADC; Incremental ADC;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Chae, K. Souri and K. Makinwa, "A $6.3{\mu}W$ 20 bit Incremental Zoom-ADC with 6 ppm INL and $1{\mu}V$ Offset," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, 2013. DOI: 10.1109/JSSC.2013.2278737   DOI
2 B. Gonen, F. Sebastino, R. Quan, R. Veldhoven, and K. Makinwa, "A Dynamic Zoom ADC with 109-dB DR for Audio Applications," IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1542-1550, 2017. DOI: 10.1109/JSSC.2017.2669022   DOI
3 S. Karmakar, B. Gönen, F. Sebastino, R. Veldhoven, and K. Makinwa, "A $280{\mu}W$ dynamic-zoom ADC with 120dB DR and 118dB SNDR in 1kHz BW," in Proc. of IEEE International Solid-State Circuits Conference, pp. 238-240, 2018.DOI: 10.1109/ISSCC.2018.8310272
4 Texas Instruments, "Continuous-Time Sigma-Delta ADCs," http://www.ti.com/lit/an/snaa098/snaa098.pdf
5 A. Hart and S. Voinigescu, "A 1 GHz Bandwidth Low-Pass Delta-Sigma ADC With 20-50 GHz Adjustable Sampling Rate," IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1401-1414, 2009.DOI: 10.1109/JSSC.2009.2015852   DOI
6 C. Weng, T. Wei, E. Alpman, C. Fu, and T. Lin, "A Continuous-Time Delta-Sigma Modulator Using ELD-Compensation-Embedded SAB and DWA-Inherent Time-Domain Quantizer," IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1235-1245, 2016.DOI: 10.1109/JSSC.2016.2532345   DOI
7 A. Sukumaran and S. Pavan, "Design of Continuous-Time Delta-Sigma Modulators With Dual Switched-Capacitor Return-to-Zero DACs," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1619-1629, 2016.DOI: 10.1109/JSSC.2016.2542200   DOI
8 B. Ginsburg and A. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, 2007.DOI: 10.1109/JSSC.2007.892169   DOI
9 M. Kim, Y. Kim, Y. Kwak, and G. Ahn, "A 12-bit 200-kS/s SAR ADC with hybrid RC DAC," in Proc. of IEEE Asia Pacific Conference on Circuits and Systems, pp. 185-188, 2014. DOI: 10.1109/APCCAS.2014.7032752
10 A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, "A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR = 107 dB at 80 kS/s," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1493-1507, 2018. DOI: 10.1109/JSSC.2017.2776299   DOI
11 J. McNeill, K. Chan, M. Coln, C. David, and C. Brenneman, "All-digital background calibration of a successive approximation ADC using the 'Split ADC' architecture," IEEE Trans. Circuits Syst. I, vol. 58, no. 10, pp. 2355-2365 2011. DOI: 10.1109/TCSI.2011.2123590   DOI
12 J. Shen, A. Shikata, L. Fernando, N. Guthrie, B. Chen, M. Maddox, N. Mascarenhas, R. Kapusta, and M. Coln, "A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1149-1160, 2018.DOI: 10.1109/JSSC.2017.2784761   DOI
13 S. Choi, H. Ku, H. Son, B. Kim, H. Park, and J. Sim., "An 84.6-dB-SNDR and 98.2-dB-SFDR Residue-Integrated SAR ADC for Low-Power Sensor Applications," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 404-417, 2018. DOI: 10.1109/JSSC.2017.2774287   DOI
14 W. Kester, "Which ADC Architecture Is Right for Your Application?," Analog Dialogue, 2005.
15 J. Choi, C. Park, and J. Choi, "A High-resolution Low-noise Capacitance to Digital Converter," Journal of IEIE, vol. 54, no. 12, pp. 81-87, 2017.   DOI
16 Maxim, "Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs," https://www.maximintegrated.com/en/app-notes/index.mvp/id/1080
17 S. Wu and J. Wu, "A 81-dB Dynamic Range 16-MHz Bandwidth Delta-Sigma Modulator Using Background Calibration," IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2170-2179, 2013. DOI: 10.1109/JSSC.2013.2264137   DOI
18 F. Mostert, D. Schinkel, W. Groothedde, L. Breems, R. Heeswijk, M. Koerts. E. Iersel. D. Groeneveld, G. Holland. P. Zeelen, D. Hissink, M. Pos, P. Wielage, F. Jorritsma, and M. Middelink, "5.1 A $5{\times}80W$ 0.004% THD+N Automotive Multiphase Class-D Audio Amplifier with Integrated Low-latency ${\Delta}{\Sigma}$ ADCs for Digitized Feedback after the Output Filter," in Proc. of IEEE International Solid-State Circuits Conference, pp. 86-87, 2017. DOI: 10.1109/ISSCC.2017.7870273
19 C. Chen, Y. Zhang and G. Temes, "History, present state-of-art and future of incremental ADCs," in Proc. of European Solid-State Circuits Conference, pp. 83-86, 2016. DOI: 10.1109/ESSCIRC.2016.7598248
20 Y. Jung and J. Roh, "The Incremental Delta-Sigma ADC for A Single-Electrode Capacitive Touch Sensor," j.inst.Korean.electr.electron.eng, vol. 17. no. 3, pp. 234-240, 2013. DOI : 10.7471/ikeee.2013.17.3.234