• Title/Summary/Keyword: Low power BIST

Search Result 10, Processing Time 0.023 seconds

Pattern Mapping Method for Low Power BIST (저전력 BIST를 위한 패턴 사상(寫像) 기법에 관한 연구)

  • Kim, You-Bean;Jang, Jae-Won;Son, Hyun-Uk;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • This paper proposes an effective low power BIST architecture using the pattern mapping method for 100% fault coverage and the transition freezing method for making high correlative low power patterns. When frozen patterns are applied to a circuit, it begins to find a great number of faults at first. However, patterns have limitations of achieving 100% fault coverage due to random pattern resistant faults. In this paper, those faults are covered by the pattern mapping method using the patterns generated by an ATPG and the useless patterns among frozen patterns. Throughout the scheme, we have reduced an amount of applied patterns and test time compared with the transition freezing method, which leads to low power dissipation.

Design for Lour pouter Scan-based BIST Using Circuit Partition and Control Test Input Vectors (회로분할과 테스트 입력 벡터 제어를 이용한 저전력 Scan-based BIST 설계)

  • 신택균;손윤식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, we propose a low power Scan-based Built-ln Self Test based on circuit partitioning and pattern suppression using modified test control unit. To partition a CUT(Circuit Under Testing), the MHPA(Multilevel Hypergraph Partition Algorithm) is used. As a result of circuit partition, we can reduce the total length of test pattern, so that power consumptions are decreased in test mode. Also, proposed Scan-based BIST architecture suppresses a redundant test pattern by inserting an additional decoder in BIST control unit. A decoder detects test pattern with high fault coverage, and applies it to partitioned circuits. Experimental result on the ISCAS benchmark circuits shows the efficiency of proposed low power BIST architecture.

  • PDF

A New Low Power Scan BIST Architecture Based on Scan Input Transformation Scheme (스캔입력 변형기법을 통한 새로운 저전력 스캔 BIST 구조)

  • Son, Hyeon-Uk;Kim, You-Bean;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • Power consumption during test can be much higher than that during normal operation since test vectors are determined independently. In order to reduce the power consumption during test process, a new BIST(Built-In Self Test) architecture is proposed. In the proposed architecture, test vectors generated by an LFSR(Linear Feedback Shift Resister) are transformed into the new patterns with low transitions using Bit Generator and Bit Dropper. Experiments performed on ISCAS'89 benchmark circuits show that transition reduction during scan testing can be achieved by 62% without loss of fault coverage. Therefore the new architecture is a viable solution for reducing both peak and average power consumption.

Transition Repression Architecture for scan CEll (TRACE) in a BIST environment (BIST 환경에서의 천이 억제 스캔 셀 구조)

  • Kim In-Cheol;Song Dong-Sup;Kim You-Bean;Kim Ki-Cheol;Kang Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.30-37
    • /
    • 2006
  • This paper presents a modified scan cell architecture to reduce the power dissipation during testing. It not only eliminates switching activities in the combinational logic during scan shifting but also reduces switching activities in the scan chain during the time. Furthermore, it limits the transitions on capture cycles. It can be made for test-per-scan BIST and employed in both single scan style and multiple scan style. Experimental results demonstrate that the proposed structure achieves the same fault coverage with lower power consumption compared to other existing BIST schemes.

The Scan-Based BIST Architecture for Considering 2-Pattern Test (2-패턴 테스트를 고려한 스캔 기반 BIST 구조)

  • 손윤식;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.45-51
    • /
    • 2003
  • In this paper, a scan-based low power BIST (Built-In Self-Test) architecture is proposed. The proposed architecture is based on STUMPS, which uses a LFSR (Linear Feedback Shift Register) as the test generator, a MISR(Multiple Input Shift Register) as the reponse compactor, and SRL(Shift Register Latch) channels as multiple scan paths. In the proposed BIST a degenerate MISR structure is used for every SRL channel; this offers reduced area overheads and has less impact on performance than the STUMPS techniques. The proposed BIST is designed to support both test-per-clock and test-per-scan techniques, and in test-per-scan the total power consumption of the circuit can be reduced dramatically by suppressing the effects of scan data on the circuits. Results of the experiments on ISCAS 89 benchmark circuits show that this architecture is also suitable for detecting path delay faults, when the hamming distance of the data in the SRL channel is considered.

A Low-power Test-Per-Scan BIST using Chain-Division Method (스캔 분할 기법을 이용한 저전력 Test-Per-Scan BIST)

  • 문정욱;손윤식;정정화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1205-1208
    • /
    • 2003
  • 본 논문에서는 분할된 스캔을 이용한 저전력 BIST 구조를 제안한다. 제안하는 BIST는 내부 스캔 패스를 회로의 구조적인 정보와 테스트 패턴 집합의 특성에 따라 4개의 스캔 패스로 분할하고 일부 스캔 패스에만 입력패턴이 인가되도록 설계하였다. 따라서 테스트 패턴 입력 시에 스캔 패스로의 쉬프트 동작 수를 줄임으로써 회로 내부의 전체 상태천이 수를 줄일 수 있다. 또한 4개로 분할되는 스캔패스의 길이를 고려하여 각 스캔 패스에 대해 1/4의 속도로 낮춰진 테스트 클럭을 인가함으로써 전체 회로의 전력 소모를 줄일 수 있도록 하였다. ISCAS89 벤치마크 회로에 대한 실험을 통하여 제안하는 BIST 구조가 기존 BIST 구조에 비해 최대 21%까지 전력소모를 줄일 수 있음을 확인하였다.

  • PDF

Reducing Test Power and Improving Test Effectiveness for Logic BIST

  • Wang, Weizheng;Cai, Shuo;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.640-648
    • /
    • 2014
  • Excessive power dissipation is one of the major issues in the testing of VLSI systems. Many techniques are proposed for scan test, but there are not so many for logic BIST because of its unmanageable randomness. This paper presents a novel low switching activity BIST scheme that reduces toggle frequency in the majority of scan chain inputs while allowing a small portion of scan chains to receive pseudorandom test data. Reducing toggle frequency in the scan chain inputs can reduce test power but may result in fault coverage loss. Allowing a small portion of scan chains to receive pseudorandom test data can make better uniform distribution of 0 and 1 and improve test effectiveness significantly. When compared with existing methods, experimental results on larger benchmark circuits of ISCAS'89 show that the proposed strategy can not only reduce significantly switching activity in circuits under test but also achieve high fault coverage.

An Efficient Test Pattern Generator for Low Power BIST (내장된 자체 테스트를 위한 저전력 테스트 패턴 생성기 구조)

  • Kim, Ki-Cheol;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.29-35
    • /
    • 2010
  • In this paper we propose a new pattern generator for a BIST architecture that can reduce the power consumption during test application. The principle of the proposed method is to reconstruct an LFSR circuit to reduce WSAs of the heavy nodes by suppressing the heavy inputs. We propose algorithms for finding heavy nodes and heavy inputs. Using the Modified LFSR which consists of some AND/OR gates trees and an original LFSR, BIST applies modified test patterns to the circuit under test. The proposed BIST architecture with small hardware overhead effectively reduces the average power consumption during test application while achieving high fault coverage. Experimental results on the ISCAS benchmark circuits show that average power reduction can be achieved up to 30.5%.

A New Low Power LFSR Architecture using a Transition Monitoring Window (천이 감시 윈도우를 이용한 새로운 저전력 LFSR 구조)

  • Kim Youbean;Yang Myung-Hoon;Lee Yong;Park Hyuntae;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.7-14
    • /
    • 2005
  • This paper presents a new low power BIST TPG scheme. It uses a transition monitoring window (TMW) that is comprised of a transition monitoring window block and a MUX. When random test patterns are generated by an LFSR, transitions of those patterns satisfy pseudo-random gaussian distribution. The Proposed technique represses transitions of patterns using a k-value which is a standard that is obtained from the distribution of U to observe over transitive patterns causing high power dissipation in a scan chain. Experimental results show that the Proposed BIST TPG schemes can reduce scan transition by about $60\%$ without performance loss in ISCAS'89 benchmark circuits that have large number scan inputs.

Test Scheduling for Low Power BIST (저전력 BIST를 위한 테스트 스케줄링)

  • Bae, Jae-Sung;Son, Yoon-Sik;Chong, Jong-Wha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.635-638
    • /
    • 2002
  • BIST(Built-In Self-Test)를 이용한 테스트 방식은 정상 동작 모드인 회로에 비해 테스트 모드에서 보다 많은 스위칭이 발생하고, 과도한 전력 소모에 의해 회로가 손상을 받을 수 있는 문제점을 갖고 있다. 본 논문은 test-per-clock BIST 구조에서 전력이 제한되어 있을 때 테스트 적용 시간과 총 에너지 소비를 최소화하기 위한 테스트 스케줄링 알고리즘을 제안한다. 제안된 방법은 테스트 세션을 구성함에 있어 각 세션에 포함되는 각 블록의 테스트 시작 시간을 동적으로 결정하여 기존의 알고리즘에 비하여 전력 소모와 전체 테스트 시간을 줄일 수 있다.

  • PDF