• Title/Summary/Keyword: CMOS Process

Search Result 1,650, Processing Time 0.03 seconds

A 900 MHz RF CMOS LNA using Q-enhancement cascode input stage (Q-증가형 캐스코드 입력단을 이용한 900 MHz RF CMOS 저 잡음 증폭기)

  • 박수양;전동환;송한정;손상희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.183-186
    • /
    • 1999
  • A 900 71Hz RF band-pass amplifier for wireless communication systems is designed and fabricated. HSPICE simulation results show that the amplifier can achieve a tunable center frequency between 880 MHz and 920 MHz. The gain of designed amplifier is 19 dB at Q=88, and the power dissipation is about 61 mW under 3 V power supply by using the spiral inductor with negative-7m circuit and center frequency tunning circuit. The designed band-pass amplifier is implemented by using 0.6 um 2-poly-3-metal standard CMOS process.

  • PDF

Pixel FPN Characteristics with Color-Filter and Microlens in Small Pixel Generation of CMOS Image Sensor (Color-Filter 및 Microlens를 포함한 CMOS Image Sensor의 Optical Stack 구조 별 Pixel FPN 특성 및 원인 분류)

  • Choi, Woonil;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.857-861
    • /
    • 2012
  • FPN (fixed-pattern-noise) mainly comes from the device or pattern mismatches in pixel and color filter, pixel photodiode leakage in CMOS image sensor. In this paper, optical stack module related pixel FPN was investigated and the classification of pixel FPN contribution with the individual optical module process was presented. The methodology and procedure would be helpful in reducing the greater pixel FPN and distinguishing the complex FPN sources with respect to various noise factors.

Noise analysis of cascode LNA with 65nm CMOS technology (65nm CMOS 기술에서의 cascode기반 LNA 잡음지수 분석)

  • Jung, Youngho;Koo, Minsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.678-681
    • /
    • 2020
  • In this paper, we analyzed the noise figure of cascode low noise amplifier (LNA) based on the measured data of 65nm CMOS devices. By using the channel thermal noise model of transistors, we expanded noise figure equation and divided the equation into three parts to see its contributions to noise figure. We also varied design parameters such as bias point, transistor gate width, and operating frequency. Our results show that different noise sources dominate at the different operating frequencies. One can easily find the noise transition frequency with device models in ahead of the practical design. Therefore, this research provides a low noise design approach for different operating frequencies.

Low-Power CMOS image sensor with multi-column-parallel SAR ADC

  • Hyun, Jang-Su;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.223-228
    • /
    • 2021
  • This work presents a low-power CMOS image sensor (CIS) with a multi-column-parallel (MCP) readout structure while focusing on improving its performance compared to previous works. A delta readout scheme that utilizes the image characteristics is optimized for the MCP readout structure. By simply alternating the MCP readout direction for each row selection, additional memory for the row-to-row delta readout is not required, resulting in a reduced area of occupation compared to the previous work. In addition, the bias current of a pre-amplifier in a successive approximate register (SAR) analog-to-digital converter (ADC) changes according to the operating period to improve the power efficiency. The prototype CIS chip was fabricated using a 0.18-㎛ CMOS process. A 160 × 120 pixel array with 4.4 ㎛ pitch was implemented with a 10-bit SAR ADC. The prototype CIS demonstrated a frame rate of 120 fps with a total power consumption of 1.92 mW.

CMOS Operational Amplifiers for Switched Capacitor Filter Application (CMOS 공정을 사용한 정밀능동필터용 연산증폭기)

  • Yang, Kyung Hoon;Kim, Wonchan;Lee, Choong Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.477-483
    • /
    • 1986
  • This paper studies the design of a CMOS operational amplifier for the switched capacitor filter by computer simulation, and presents the results of measurement. The operational amplifier composed of two stages is fabricated in the CMOS digital process. The DC voltage gain of the operational amplifier is 66dB, and the unity gain bandwidth is 833kHz. These results satisfy the performance requirmance requirements for the operational amplifier of the switched capacitor filter.

  • PDF

A 0.25-$\mu\textrm{m}$ CMOS 1.6Gbps/pin 4-Level Transceiver Using Stub Series Terminated Logic Interface for High Bandwidth

  • Kim, Jin-Hyun;Kim, Woo-Seop;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.165-168
    • /
    • 2002
  • As the demand for higher data-rate chip-to-chip communication such as memory-to-controller, processor-to-processor increases, low cost high-speed serial links\ulcorner become more attractive. This paper describes a 0.25-fm CMOS 1.6Gbps/pin 4-level transceiver using Stub Series Terminated Logic for high Bandwidth. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by channel low pass effects, process-limited on-chip clock frequency, and serial link distance. The proposed transceiver uses multi-level signaling (4-level Pulse Amplitude Modulation) using push-pull type, double data rate and flash sampling. To reduce Process-Voltage-Temperature Variation and ISI including data dependency skew, the proposed high-speed calibration circuits with voltage swing controller, data linearity controller and slew rate controller maintains desirable output waveform and makes less sensitive output. In order to detect successfully the transmitted 1.6Gbps/pin 4-level data, the receiver is designed as simultaneous type with a kick - back noise-isolated reference voltage line structure and a 3-stage Gate-Isolated sense amplifier. The transceiver, which was fabricated using a 0.25 fm CMOS process, performs data rate of 1.6 ~ 2.0 Gbps/pin with a 400MHB internal clock, Stub Series Terminated Logic ever in 2.25 ~ 2.75V supply voltage. and occupied 500 * 6001m of area.

  • PDF

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

Enhanced fT and fMAX SiGe BiCMOS Process and Wideband Power Efficient Medium Power Amplifier

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.232-238
    • /
    • 2008
  • In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-metal (MIM) capacitor and three types of resistors are all integrated in this process. This MPA is a two stage amplifier with all matching components and bias circuits integrated on-chip. A P1dB of 17.7 dBm has been measured with a power gain of 8.7 dB at 3.4 GHz with a total current consumption of 30 mA from a 3 V supply voltage at $25^{\circ}C$. The measured 3 dB bandwidth is 2.7 GHz and the maximum Power Added Efficiency (PAE) is 41 %, which are very good results for a fully integrated Medium PA. The fabricated circuit occupies a die area of $1.7mm{\times}0.8mm$.

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

The Active Dissolved Wafer Process (ADWP) for Integrating single Crystal Si MEMS with CMOS Circuits

  • Karl J. Ma;Yogesh B. Glanchandani;Khalil Najafi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.273-279
    • /
    • 2002
  • This paper presents a fabrication technology for the integration of single crystal Si microstructures with on-chip circuitry. It is a dissolved wafer technique that combines an electro-chemical etch-stop for the protection of circuitry with an impurity-based etch-stop for the microstructures, both of which are defined in an n-epi layer on a p-type Si wafer. A CMOS op. amp. has been integrated with $p^{++}$ Si accelerometers using this process. It has a gain of 68 dB and an output swing within 0.2 V of its power supplies, unaffected by the wafer dissolution. The accelerometers have $3{\;}\mu\textrm{m}$ thick suspension beams and $15{\;}\mu\textrm{m}$ thick proof masses. The structural and electrical integrity of the fabricated devices demonstrates the success of the fabrication process. A variety of lead transfer methods are shown, and process details are discussed.