Browse > Article
http://dx.doi.org/10.5369/JSST.2010.19.3.209

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics  

Chung, Gwiy-Sang (School of Electrical Eng., University of Ulsan)
Lee, Byung-Chul (School of Electrical Eng., University of Ulsan)
Publication Information
Journal of Sensor Science and Technology / v.19, no.3, 2010 , pp. 209-213 More about this Journal
Abstract
This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.
Keywords
micro power generator; vibration energy; energy harvesting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia, “Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers”, Smart Mater. Struct., vol. 18, pp. 055012 (1)-055012(14), 2009.
2 K. Kano, K. Arakawa, Y. Takeuchi, M. Akiyama, N. Ueno, and N. Kawahara, “Temperature dependence of piezoelectric properties of sputtered AlN on silicon substrate”, Sens. & Actu. A, vol. 130, pp. 397-402, 2006.   DOI   ScienceOn
3 D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle, and D. J. Kim, “The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting”, J. Micromech. Microeng., vol. 18, pp. 055017(1)-055017(7), 2008.
4 S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003-2006)”, Smart Mater. Struct., vol. 16, pp. R1-R21, 2007.   DOI   ScienceOn
5 S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications”, Meas. Sci. Technol., vol. 17, pp. R175-R195, 2006.   DOI   ScienceOn
6 K. A. Cook-chennault, N. Thambi, M. A. Bitetto, and E. B. Hameyie, “Piezoelectric energy harvesting: A green and clean alternative for sustained power production”, Bull. Sci. Technol. Soc., vol. 28, pp. 496-509, 2008.   DOI
7 J. B. Lee, J. P. Jung, M. H. Lee, and J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, vol. 447, pp. 610-614, 2004.   DOI   ScienceOn
8 J. Olivares, E. Iborra, M. Clement, L. Vergara, J. Sangrador, and A. Sanz-Hervas, “Piezoelectric actuation of microbridges using AlN”, Sens. & Actu. A, vol. 123, pp. 590-595, 2005.   DOI   ScienceOn
9 K. Tonisch, V. Cimalla, Ch. Foerster, H. Romanus, O. Ambacher, and D. Dontsov, “Piezoelectric properties of polycrystalline AlN thin film for MEMS application”, Sens. & Actu. A, vol. 132, pp. 658-663, 2006.   DOI   ScienceOn
10 K. M. Chang, R. J. Lin, and I. C. Deng, “Design of low-temperature CMOS-process compatible membrane fabricated with sacrificial aluminum layer for thermally isolated applications”, Sens. & Actu. A, vol. 134, pp. 660-667, 2007.   DOI   ScienceOn