DOI QR코드

DOI QR Code

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics

CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성

  • 정귀상 (울산대학교 전기전자정보시스템공학부) ;
  • 이병철 (울산대학교 전기전자정보시스템공학부)
  • Received : 2010.01.12
  • Accepted : 2010.04.16
  • Published : 2010.05.31

Abstract

This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

Keywords

References

  1. S. R. Anton and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003-2006)”, Smart Mater. Struct., vol. 16, pp. R1-R21, 2007. https://doi.org/10.1088/0964-1726/16/3/R01
  2. S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications”, Meas. Sci. Technol., vol. 17, pp. R175-R195, 2006. https://doi.org/10.1088/0957-0233/17/12/R01
  3. K. A. Cook-chennault, N. Thambi, M. A. Bitetto, and E. B. Hameyie, “Piezoelectric energy harvesting: A green and clean alternative for sustained power production”, Bull. Sci. Technol. Soc., vol. 28, pp. 496-509, 2008. https://doi.org/10.1177/0270467608325374
  4. J. Olivares, E. Iborra, M. Clement, L. Vergara, J. Sangrador, and A. Sanz-Hervas, “Piezoelectric actuation of microbridges using AlN”, Sens. & Actu. A, vol. 123, pp. 590-595, 2005. https://doi.org/10.1016/j.sna.2005.03.066
  5. K. Tonisch, V. Cimalla, Ch. Foerster, H. Romanus, O. Ambacher, and D. Dontsov, “Piezoelectric properties of polycrystalline AlN thin film for MEMS application”, Sens. & Actu. A, vol. 132, pp. 658-663, 2006. https://doi.org/10.1016/j.sna.2006.03.001
  6. K. M. Chang, R. J. Lin, and I. C. Deng, “Design of low-temperature CMOS-process compatible membrane fabricated with sacrificial aluminum layer for thermally isolated applications”, Sens. & Actu. A, vol. 134, pp. 660-667, 2007. https://doi.org/10.1016/j.sna.2006.02.053
  7. J. B. Lee, J. P. Jung, M. H. Lee, and J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, vol. 447, pp. 610-614, 2004. https://doi.org/10.1016/j.tsf.2003.07.023
  8. W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia, “Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers”, Smart Mater. Struct., vol. 18, pp. 055012 (1)-055012(14), 2009.
  9. K. Kano, K. Arakawa, Y. Takeuchi, M. Akiyama, N. Ueno, and N. Kawahara, “Temperature dependence of piezoelectric properties of sputtered AlN on silicon substrate”, Sens. & Actu. A, vol. 130, pp. 397-402, 2006. https://doi.org/10.1016/j.sna.2005.12.047
  10. D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle, and D. J. Kim, “The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting”, J. Micromech. Microeng., vol. 18, pp. 055017(1)-055017(7), 2008.

Cited by

  1. Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester vol.22, pp.5, 2013, https://doi.org/10.5369/JSST.2013.22.5.364