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ADAPTATION OF THE MINORANT FUNCTION FOR

LINEAR PROGRAMMING

S. Leulmi and A. Leulmi

Abstract. In this study, we propose a new logarithmic barrier approach

to solve linear programming problem using the projective method of Kar-

markar. We are interested in computation of the direction by Newton’s
method and of the step-size using minorant functions instead of line search

methods in order to reduce the computation cost. Our new approach is

even more beneficial than classical line search methods. We reinforce our
purpose by many interesting numerical simulations proved the effective-

ness of the algorithm developed in this work.

1. Introduction

Interior-point methods are one of the efficient methods developed to solve
linear and non linear programming problems.

Several algorithms have been proposed to solve the linear programming prob-
lem, where, we distinguish three fundamental classes of interior point methods
namely: projective interior point methods and their alternatives, central tra-
jectory methods, barrier/penalty methods [2]. Our work is based on the latter
type of interior point methods for solving linear programming problems.

In this paper, we propose a logarithmic barrier interior-point method for
solving linear programming problems (LP). In fact, the main difficulty to be
anticipated in establishing an iteration in such a method will come from the
determination and computation of the step-size. Various approaches are devel-
oped to overcome this difficulty. It is known in [2, 6] that the computation of
the step-size is expensive specically when line search methods are used. Leulmi
and all. [5] proposed efficient and less expensive procedures in semidefinite
programming not only to avoid line search methods, but also to accelerate the
algorithm’s convergence. The purpose of this paper is to exploit this idea for
LP problems.
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We consider the following linear programming problem

(D)


min
x
f (x)

gi(x) ≤ 0, i = 1, ..., n
x ∈ Rn,

where f, gi étant convexes et différentiables sur un ouvert convexe contenant

X = {x ∈ Rm : gi(x) ≤ 0, i = 1, ..., n} .

In all which follows, we denot by

(1) X = {x ∈ Rm : gi(x) ≤ 0, i = 1, ..., n}, the set of feasible solutions of
(D) .

(2) X̂ = {x ∈ Rm : gi(x) < 0, i = 1, ..., n}, the set of strictly feasible solu-
tions of (D) .

Let u, v ∈ Rn, their scalar product is defined by

〈u, v〉 = uT v =

n∑
i=1

uivi.

We suppose that the set X̂ (coincides with int(X)) is not empty.
The problem (D) is approximated by the following perturbed problem (Dη)

(Dη)

{
min fη(x)
x ∈ Rn, (1)

with the penalty parameter η > 0, and fη is the barrier function defined by

fη(x) =

 f (x) + nη ln η − η
n∑
i=1

ln (−gi (x)) if x ∈ X

+∞ if not.

We are interested then in solving the problem (Dη).
The idea of this new approach consists to introduce one original process to

calculate the step-size based on minorant functions.
The main advantage of (Dη) resides in the strict convexity of its objective

function and its feasible domain. Consequently, the conditions of optimality are
necessary and sufficient. This fosters theoretical and numerical studies of the
problem.

One of the advantages of the problem (D) with respect to its prturbed prob-
lem (Dη) is that variable of the objective function is a vector instead of a matrix
in the type problem (Dη).

We study in the next section, the existence and uniqueness of optimal solution
of the problem (Dη), and we show its convergence to problem (D), in particular
the behavior of its optimal value and its optimal solutions when η → 0, then
lim
η→0

xη = x∗ is an optimal solution of (D).
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In Section 3, we propose an interior point algorithm based on the Newton’s
approach which allows us to solve the nonlinear system resulting from the op-
timality conditions. The iteration of this algorithm is of descent type, defined
by xk+1 = xk + αkdk, where dk is the descent direction and αk is the step-
size. Also, we present different steps-size by minimizing a minorant functions
which approximate the unidimensional function θ(αk) = min

α>0
f(x + αd). The

last section, is dedicated to the presentation of comparative numerical tests to
illustrate the effectiveness of our approaches and to determine the most efficient
algorithm.

The main advantage of (Dη) resides in the strict convexity of its objective
function and its feasible domain. Consequently, the conditions of optimality are
necessary and sufficient. This, fosters theoretical and numerical studies of the
problem.

Before this, it is necessary to show that (Dη) has at least an optimal solution.

2. Existence and uniqueness of optimal solution of perturbed
problem and its convergence to problem (D)

2.1. Existence and uniqueness of optimal solution of perturbed prob-
lem

Firstly, we give the following definition
Definition 2.1. Let f be a function defined from Rm to R∪{∞}, f is called

inf-compact if for all η > 0, the set Xη (f) = {x ∈ Rm : f(x) ≤ η} is compact,
which comes in particular to say that its cone of recession is reduced to zero.

To prove that (Dη) has an optimal solution, we show that fη is inf-compact.
For that, it is enough to prove that the cone of recession

X̂
(
(fη)∞

)
=
{
d ∈ Rn, (fη)∞ (d) ≤ 0

}
,

is reduced to the origin, i.e.,(
(fη)∞ (d) ≤ 0

)
⇒ (d = 0) ,

where (fη)∞ is defined by

(fη)∞ (d) = lim
α→+∞

fη (x+ αd)− fη (x)

α
= bT d.

This needs to prove the following proposition.

Proposition 2.1. d = 0 whenever bT d ≤ 0 and AT d ∈ X̂.

Proof. Assume that d 6= 0, btd ≤ 0 and U =
∑m
i=1 xiAi ∈ S+

n . As the set F̂ is
nonempty, then there exists x > 0, such that Ax = b.
We have

〈b, d〉 = 〈Ax, d〉 =
〈
x,AT d

〉
> 0⇒ bT d > 0,

contradiction.
Hence, fη is inf-compact, therefore we conclude that the problem (Dη) admits
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at least an optimal solution.
The proposition is proved. �

Then, The problem (Dη) has an optimal solution.
We know that the Hessian matrix H = O2fη (x) is positive definite, then

the problem (Dη) is strictly convex and if it has an optimal solution then it is
unique.

We have

fη(x) = f (x) + nη ln η − η
n∑
i=1

ln (−gi (x)) ,

As fη is inf-compact and strictly convex, therefore the problem (Dη) admits
a unique optimal solution.

We denote by x(η) or xη the unique optimal solution of (Dη).

2.2. Convergence of the perturbed problem to the problem (D)

For x ∈ X̂, let’s introduce the symmetrical definite positive matrix Bi of rank

m, i = 1, ..., n and the lower triangular matrix L, such that Bi = Aei (Aei)
T

=
LLT , which implies that H is a positive definite matrix.

In what follows, we will be interested by the behavior of the optimal value
and the optimal solution x(η) of the problem (Dη). For that, let us introduce
the function θ defined by

θ (x, η) = fη(x) =

{
fη(x) if x ∈ X̂,
+∞ if not.

Proposition 2.2. For η > 0, let xη an optimal solution of the problem (Dη),
then there exists x ∈ X an optimal solution of (D) , such that, lim

η−→0
xη = x.

Proof. The function θ is differentiable at the optimal point (x(η), η) and checks

Oxθ (x(η), η) = Ofη (xη) = 0.

So, for all x ∈ X̂ we have

f(x) = θ(x, 0) ≥ θ (x(η), η) + 〈x− x(η),Oxθ (x(η), η)〉+ (0− η)Oηθ (x(η), η) ,

This gives

f(x) ≥ f(xη)− nη, ∀x ∈ X̂.
Hence

min
x∈X

f(x) ≥ f (xη)− nη,

then

f (xη) ≥ min
x∈X

f(x) ≥ f (xη)− nη.
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When η tends towards zero, we obtain

min
x∈X

f(x) = lim
η−→0

f (xη) .

Finally, if xη is an optimal solution of the problem (Dη) then there exists x =
lim
η−→0

xη an optimal solution of the problem (D). The proposition is proved. �

In all that follows, we adopt the following conventions : The vector e ∈ Rn
is the vector whose all the components are equal to 1, given a vector x ∈ Rn, Y
is the diagonal matrix whose diagonal elements are the components of x (i.e.,
Y = diag{x}). The convergence of the algorithm is based on the following
function, called ”multiplicative potential function”, defined for all x ∈ X, x > 0,
by

f (x) =
〈b, x〉n
n∏
i=1

xi

,

that we extend by semi-continuity on Y .
We can also consider the function ”logarithmic potential function”, defined

by

q (x) = ln f (x) = n ln (〈b, x〉)−
n∑
i=1

ln (xi) ,

where f verifies the following properties
1) 0 < f(x) < +∞ if x > 0 and Ax = 0.
2) f(x) = +∞ if x belongs to the relative boundary X without solution of

(D).
3) f(x) = 0 if x is solution of (D) or if x = 0.
4) f(kx) = f(x) for all x ∈ X and all k > 0.
Thus, the problem (D) is to find the optimal solutions of the problem min f (x) = 0

Ax = 0
x ≥ 0, x 6= 0.

Starting from the known x ∈ X point, the Karmarkar algorithm is a descent
method that generates, because of the barrier character of the objective function
f , a sequence of points all contained in the relative interior of X, of where the
denomination of method of interior points. We will describe the transition from
the initial iterated x to the iterated x̃. We assume that iterated x̃ satisfies x̃ > 0
and Ax̃ = 0.

Remark 1. Normalization we normalize x by the relation x =
√

n
〈x,x〉x,in order

to have 〈x, x〉 = n.



602 S. LEULMI AND A. LEULMI

3. Computation of the Newton descent direction

In this part, we are interested in the numerical solution of the problem (Dη).
Interior point methods of types logarithmic barrier are conceived for solving
this problem type while being based on the optimality conditions which are
necessary and sufficient. xη is an optimal solution of (Dη) if it satisfies the
following condition

Ofη (xη) = 0. (2)

To solve (1), we use the Newton’s approach which means to find at each
iteration a vector xηk + dk checking the following linear system

Hkdk = −Ofη (xηk) . (3)

As Hk = O2fη (xηk) is a symmetric positive definite matrix, the Cholesky
methods and the conjugate gradient methods are the best convenient for solving
the system (2). It’s easy to see that we have

f (x̃)

f (x)
= g (z) ,

with

z = X−1x̃, g (z) =
〈b, z〉n
n∏
i=1

zi

,

and b = 1
〈c,x〉Xc. The conditions Ax̃ = 0, x̃ ≥ 0 and x̃ 6= 0 are transposed into

AXz = 0, z ≥ 0 and z 6= 0.

Let’s put B = AX. Problem (D) is equivalent to the problem

(D)

 min g (z) = 0
Bz = 0

z ≥ 0, z 6= 0,

e is feasible solution of this problem and we have g(e) = 〈b, e〉 = 1.
Since we have g(kz) = g(z) for all z ≥ 0 and all k > 0, we will work on the

following standard problem

(DN )

 min g (z) = 0
Bz = 0

〈e, z〉 = n, z ≥ 0.

It is easy to see that the matrix (At, x) is of rank m + 1, it is the same of
the matrix (Bt, e). Obtaining a Newton descent direction at point e for the
problem (DN ) is obtained by solving the quadratic problem

(DQ)

{
min 1

2

〈
∇2g (e) d, d

〉
+ 〈∇g (e) , d〉

Bd = 0, 〈e, d〉 = 0.

For that, let’s introduce the matrix

P = I −
(
Bt, e

) [(
Bt, e

)t (
Bt, e

)]−1 (
Bt, e

)t
,
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which corresponds to the projection on the linear subspace

E = {d : Bd = 0, 〈e, d〉 = 0} ,

we have P 2 = P = P t, PBt = 0 and Pe = 0. It’s easy to see that we have

P∇g (e) = Pb and P∇2g(e)P = I + n (n− 1)PbbtP,

the quadratic problem is equivalent to the problem{
min 1

2

〈
∇2g (e) d, d

〉
+ 〈∇g (e) , d〉

Pd = d,

whose optimal solution is collinear to d = −Pb = −P∇g (e) .
The direction d coincides with the direction given by the projected gradi-

ent. We are now interested in some properties of d. First, we have 〈d, e〉 =
−〈Pb, e〉 = −〈b, Pe〉 = 0, we then observe that we have on the one hand{

z : 〈e, z〉 = n

‖z − e‖2 ≤ n
n−1

}
⊂
{
z : 〈e, z〉 = n

z ≥ 0

}
⊂
{

z : 〈e, z〉 = n

‖z − e‖2 ≤ n (n− 1)

}
,

on the other hand  min 〈b, z − e〉 = −1
Bz = 0

〈e, z〉 = n, z ≥ 0,

since P (e− z̄) = e− z̄, then 〈b, z − e〉 = 〈Pb, z − e〉 , we obtain

‖Pb‖
√

n

n− 1
≤ 1 ≤ ‖Pb‖

√
n (n− 1),

In the following, we denote by d̄ and σ the mean and the standard deviation
of (d1, d2, ..., dn). we have

d̄ =
1

n

n∑
i=1

di = 0 and σ2 =
‖d‖2

n
− d̄2.

Note that all optimal solutions of this problem is a convex polyhedron con-
tained in the relative boundary of the set of feasible points. To ensure the
convergence of the algorithm towards an optimal solution x∗ of (Dη), it should
be made sure that all the iterate xηk + dk remains strictly feasible.

In the next section, we calculate the step-size for our new approach.

4. Computation of the step-size with the minorant functions

In the descent methods, the line search methods are known to compute the
optimal step-size αk. It suffice to minimize the unidimensional function

θ(αk) = min
α>0

fη(x+ αd).

The most used methods of the type line search are those of Goldstein–Armijo,
Fibonacci, etc. Unfortunately, these methods are expensive in computational
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volume, and even inapplicable to semidefinite problems. To avoid this diffi-
culty, we exploit the idea suggested by J.P. Crouzeix and B. Merikhi [2] which
approaches the function

ϕ(α) =
1

η
[fη(x+ αd)− fη(x)], (4)

by the simple minorant function giving at each iteration k, a step-size αk in an
easy way, simple and much less expensive than line search methods.

But, we propose a new idea, we suggest the simple minorant functions, we
approaches the function (4) .

Remark 2. To keep the function ϕ(α) well defined, it is necessary that for all

x ∈ X̂, (x+ αd) still in X̂. Which returns to find α̂ > 0 such that for any

α ∈ [0, α̂] , x+ αd ∈ X̂.

Proposition 4.1. Let α̂ = sup {α, 1 + diα} with di = −POg (e) , ∀i = 1, ..., n.
Far all α ∈ [0, α̂], the following function ϕ(α) is well defined

ϕ(α) = n ln
(
1− ‖d‖2α

)
−

n∑
i=1

ln(1 + diα), α ∈ [0, α̂] .

4.1. Some useful inequalities

Before determining these functions, we need the following results
The following result is caused by H. Wolkowicz and al. [9], see also J. P.

Crouzeix and al. [3] for additional results.

Proposition 4.2. [9]

x̄− σx
√
n− 1 ≤ min

i
xi ≤ x̄−

σx√
n− 1

,

x̄+
σx√
n− 1

≤ max
i
xi ≤ x̄+ σx

√
n− 1.

Let’s recall that, B. Merikhi and al. (2008) [2] proposed some useful inequal-
ities related to the maximum and to the minimum of xi > 0 for any i = 1, ..., n

n ln(x̄− σx
√
n− 1) ≤ A ≤

n∑
i=1

ln(xi) ≤ B ≤ n ln(x̄), (7)

with

A = (n− 1) ln(x̄+
σx√
n− 1

) + ln(x̄− σx
√
n− 1),

B = ln(x̄+ σx
√
n− 1) + (n− 1) ln(x̄− σx√

n− 1
).

Such that x̄ and σx are respectively, the mean and the standard deviation
of a statistical series {x1, x2, ..., xn} of n real numbers. These quantities are
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defined as follows

x̄ =
1

n

n∑
i=1

xi and σ2
x =

1

n

n∑
i=1

x2i − x̄2 =
1

n

n∑
i=1

(xi − x̄)2.

Based on this results, we give in the following, new notions of the non ex-
pensive minorant functions for ϕ, that offers some variable steps-size to every
iteration with a simple technique.

Thanks to definite positivity results in linear algebra, we propose three dif-
ferent alternatives that offers some variable steps-size α to every iteration.

The efficient one to the other can be translated by numerical tests that we
will present at the end of this work.

4.2. The minorant functions

We seek a minorant function ϕ̂ of ϕ on [0, α̂i], i = 1, 2 and 3, such that

‖d‖2 = n(d̄2 + σ2) = ϕ̂′′(0) = −ϕ̂′(0), ϕ̂ (0) = 0.

In the following, we take xi = 1 + αdi, x = 1 + αd and σx = ασ.

4.2.1. First minorant function. This strategy consists to minimize the mino-
rant approximations ϕ̃ of ϕ over [0, α̂[ . To be efficient, this minorant approxi-
mation needs to be simple and sufficiently near ϕ. In our case, it requires

0 = ϕ̃(0), ‖d‖2 = ϕ̃′′(0) = −ϕ̃′(0).

By applying inequalities (7) , we give

n∑
i=1

ln(xi) ≤ B.

Where

n ln
(
1− nασ2

)
−

n∑
i=1

ln(1 + diα) ≥ n ln
(
1− nασ2

)
−B.

Thus the first minorant function can be defined as follows

ϕ1 (α) = n ln
(
1− nασ2

)
−B

ϕ1 (α) = n ln
(
1− nασ2

)
− (n− 1) ln

(
1− σα√

n− 1

)
− ln

(
1 + σα

√
n− 1

)
.

The minorant function ϕ1 is definite and convex on [0, α̂1] and we have
ϕ1 (α) ≤ ϕ (α) ,

with ϕ1 (0) = 0 and ϕ′′1 (0) = −ϕ′1 (0) = ‖d‖2 .
This minimum is obtained in ᾱ1 = αopt, such that, ϕ′1(α) = 0. We have

ϕ′1 (α) = − n2σ2

1− nασ2
+

(n− 1)σ√
n− 1− σα

− σ
√
n− 1

1 + σα
√
n− 1

.



606 S. LEULMI AND A. LEULMI

Thus, we deduce that the function ϕ1 reaches its minimum at a unique point
ᾱ1 which is the root of ϕ′1(α) = 0.

ᾱ1 =
n
√
n− 1√

n− 1− n (n− 2)σ
.

We take for new iterated

x̃ = X (e+ ᾱ1d) = x+ ᾱ1Xd.

By construction we have x̃ > 0 and Ax̃ = 0. By replacing ᾱ1 by its value we
obtain

En remplaçant ᾱ par sa valeur on obtient

ϕ1 (ᾱ1) = (n− 1) ln

(
1 +

nσ√
n− 1

)
+ ln

(
1− nσ

√
n− 1

)
.

The quantity ϕ1 (ᾱ1) − ϕ1 (0) = ϕ1 (ᾱ1) depends on σ. We pose u =
nσ
√
n− 1, we obtain : 1 ≤ u ≤ n− 1 and

ϕ1 (ᾱ1) = (n− 1) ln

(
1 +

nσ√
n− 1

)
+ ln

(
1− nσ

√
n− 1

)
= (n− 1) ln

(
1 +

u

n− 1

)
+ ln (1− u) = ξ (u) .

We deduce

ϕ1 (ᾱ1) = ξ (u) > ln (2)− 1 +
n

2 (n− 1)
(u+ 1) ≥ ln

(
2

e

)
' −0.307.

4.2.2. Second minorant function. One can also thought of simpler functions
than ϕ1 (involving only one logarithm) to extract from the known inequality

n ln
(
1− nασ2

)
−

n∑
i=1

ln(1 + diα)− ln (1 + ‖d‖α) 6 0,

where

ϕ2 (α) = n ln
(
1− nασ2

)
− ln (1 + β2α) , α ∈ [0, α̂2] ,

with α̂2 = −1
β2

and β2 = ‖d‖.
The minorant function ϕ2 is definite and convex on [0, α̂2] and we have

ϕ (α) ≥ ϕ2 (α) ,

with ϕ2 (0) = 0 and ϕ′′2 (0) = −ϕ′2 (0) = ‖d‖2 .

4.2.3. Third minorant function. Another minorant function simpler than ϕ1

involving also only one logarithm.
We consider functions of the following type

ϕ̆(α) = n ln
(
1− nασ2

)
− γ̆ ln(1 + β̆α), α ∈ [0, ᾰ[ ,

where in order to fulfill the requirements

ᾰ = sup[α : 1 + αβ̆ > 0]. (5)
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We can also think of another minorant function ϕ3 better approximating ϕ1

than ϕ2, i.e.,

ϕ2(α) ≤ ϕ3(α) ≤ ϕ1(α),

such that β3 = d̄ − σ√
n−1 , and we are looking for γ3 = ‖d‖2

β2
3

which checks (5),

which gives

ϕ3 (α) = n ln
(
1− nασ2

)
− γ3 ln(1 + β3α),

Proposition 4.3. ϕi, i = 1, 2, 3, is strictly convex over [0, α̊[ , with α̊ =
min (α̂, α̂1, α̂2), ϕ(α)→ +∞ when α→ α̂. So we have

ϕ2(α) ≤ ϕ3(α) ≤ ϕ1(α) ≤ ϕ(α), ∀α ∈ [0, α̊[ .

Proof. The first inequality is obvious. The inequality ϕ(α) ≥ ϕ1(α) is a direct
consequence of (7). Let’s consider

g(α) = ϕ3(α)− ϕ1(α).

Since β1 = β2 and β1 ≤ γ1, we have for any α ∈ [0, α̊[

g′′(α) =
γ2β

2
2 − (n− 1)β2

1

(1 + β1α)2
− γ21

(1 + γ1α)2
≤ γ21

(1 + β1α)2
− γ21

(1 + γ1α)2
≤ 0,

and since g(0) = g′(0) = 0 and g′′(α) ≤ 0, it becomes g(α) ≤ 0 for any α ∈ [0, α̊[.
Then, let’s put

h(α) = ϕ2 (α)− ϕ3 (α) ,

so

h(0) = h′(0) = 0 and h′′(α) =
β2
2

(1 + β2α)2
− γ3β

2
3

(1 + β3α)2
.

Since ‖d‖2 = γ2β
2
2 and so β3 = ‖d‖

h′′(α) = ‖d‖2
(

1

(1 + β2α)2
− 1

(1 + β3α)2

)
≤ 0.

because β3 ≤ β2. Therefore h(α) ≤ 0 for any α ∈ [0, α̊[. �

Thus, we deduce that the function ϕi reaches its minimum at a unique point
ᾱi which is the root of ϕ′i(α) = 0. Thus, the three values ᾱi, i = 1, 2, 3 are
explicitly computed, then, we take ᾱ1, ᾱ2 and ᾱ3 are belongs to the interval
(0, α̂− ε) and ϕ′(α) < 0, with ε > 0, is a fixed precision.

Remark 3. The calculation of ᾱ is performed by a dichotomous procedure, in
the cases where ᾱi /∈ (0, α̂− ε), and ϕ′(α) > 0, as follows
Put a = 0 and b = α̂− ε.
while |b− a| > 10−4

If ϕ(a+b2 ) < 0 then b = a+b
2

else a = a+b
2 , so ᾱ = b.

This calculation guarantees a better approximation of the minimizer of ϕ′(α)
while remaining in the domain of ϕ.
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Proposition 4.4. Let xk+1 and xk two strictly feasible solutions of (Dη), ob-
tained respectively at the iteration k + 1 and k, so we have

fη (xk+1) < fη (xk) .

Proof. We have

fη (xk+1) ' fη (xk) + 〈Ofη (xk) , xk+1 − xk〉 ,
and xk+1 = xk + αkdk thus

fη (xk+1)− fη (xk) ' 〈Ofη (xk) , αkdk〉 = αk
〈
−O2fη (xk) dk, dk

〉
' −αk

〈
O2fη (xk) dk, dk

〉
< 0.

Therefore fη (xk+1) < fη (xk) .
�

5. The algorithm

In this section, we present the algorithm of our approach to obtain an optimal
solution x̄ to the problem (D).

For simplicity, we consider xk instead of xηk and x instead of xη.
Begin algorithm
Initialization
x0 > 0 is a strictly feasible solution of (D) , d0 ∈ Rn, ε > 0 is a given

precision.
Iteration

• While
∣∣bT dk∣∣ > ε do

(1) Normalization : x =
√

n
〈x,x〉x

(2) Take b = 1
〈c,x〉Xc,B = AX.

(3) Solve {d : Bkd = 0, 〈e, d〉 = 0} , δ = Xd.
(4) Compute the step-size using the strategies Si, i = 1, 2, 3.
(5) Take the new iterate xk+1 = xk + αkdk.
(6) Take k = k + 1.

• End while

End algorithm
This approach reaches to reduce the number of the iteration and the time of

calculation. In the following Section, we present some examples.

6. Numerical tests

The following examples are taken from the literature see for instance [[1],[4],[8]]
and implemented in MATLAB R2013a on Pentium(R) Dual Core CPU T4400
(2.20 GHz) with 3.00 Go RAM. We have taken ε = 1.0e− 006. In the table of
results, (size) represents the size of the example, (itrat) represents the number
of iterations necessary to obtain an optimal solution, (time) represents the time
of computation in seconds (s) and (st) represents the strategy. We note that
the matrices used in the numerical tests are full matrices.
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6.1. Examples of fixed sizes

Example 01:

A =

[
1 −1 0
1 1 1

]
, b =

[
0
1

]
and c =

[
1 1 0

]t
Example 02:

A =

[
2 3 1 2
3 0 −2 1

]
b =

[
2
0

]
and c =

[
4 1 2 0

]T
.

Example 03:

A =

 1 −1 1 1
2 1 −1 2
1 1 1 2

 , b =

 3
4
5

 and c =
[

3 2 1 3
]T
.

Example 04:

A =

 2 1 0 −1 0 0
0 0 1 0 1 −1
1 1 1 1 1 1

 , b =

 0
0
1

 and c =
[

3 −1 1 0 0 0
]T
.

Example 05:

A =


−1 1 1 −1 1 0 0
0 2 −3 2 0 1 0
−3 2 1 0 0 0 1
3 5 4 0.5 0 0 0

 , b =


1
2
0
2

 and c =
[

1 1 0 0 1 1 −2
]T
.

Example 06:

A =


0 1 2 −1 1 1 0 0 0
1 2 3 4 −1 0 1 0 0
−1 0 −2 1 2 0 0 1 0
1 2 0 −1 −2 0 0 0 1
1 3 4 2 1 0 0 0 0

 , b =


1
2
3
2
1

 and c =
[

1 0 −2 1 1 0 0 0 0
]T

Example 07:

A =


1 0 −4 3 1 1 1 0 0 0 0 0
5 3 1 0 −1 3 0 1 0 0 0 0
4 5 −3 3 −4 1 0 0 1 0 0 0
0 −1 0 2 1 −5 0 0 0 1 0 0
−2 1 1 1 2 2 0 0 0 0 1 0
2 −3 2 −1 4 5 0 0 0 0 0 1

 , b =


1
4
4
5
7
5


and c =

[
−4 −5 −1 −3 5 −8 0 0 0 0 0 0

]T
.

Example 08:
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The matrix A is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 4 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 3 -1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 1


The vector c and b are

c =
[

2 −1 −3 5 −2 0 4 1 2 −1 1 −1 0 2 0 0 0 0 0 0 0 0 0 0 0
]t

b =
[

8 4 6 2 5 1 2 6 3 9 4
]T

The last examples can be given in the following table

size st1 st3 st2
itrat time itrat time itrat time

2× 3 2 0.0016 2 0.0016 4 0.0025
2× 4 3 0.012 5 0.032 7 0.045
3× 4 1 0.001 1 0.0019 4 0.0034
3× 6 4 0.024 6 0.042 9 0.077
4× 7 6 0.032 9 0.045 10 0.069
5× 9 5 0.049 8 0.079 12 0.089
6× 12 7 0.055 9 0.082 13 0.091
11× 25 9 0.058 13 0.086 15 0.098

6.2. Example cube

n = 2m, n = 2m, A[i, j] = 0 if i 6= j or (i+ 1) 6= j.
A[i, j] = A[i, i+m] = 1, b[i] = 2, for i, j = 1, ...,m.
The following table resumes the obtained results

size st1 st2 st3
itrat time itrat time itrat time

50× 100 1 0.014 12 0.099 3 0.35
100× 200 1 0.023 17 0.55 6 0.51
200× 400 2 0.051 18 0.59 7 0.66
450× 900 3 0.069 21 0.98 9 0.85

Commentary
These tests show, clearly, the impact of our three strategies offer an optimal

solution of (D) in a reasonable time and with a small number of iterations.
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We notice that the 1st strategy is the best. The obtained comparative nu-
merical results favor this last strategy moreover, it requires a computing time
largely low vis-a-vis the other two strategies. This seems to be quite expected,
because theoretically the strategy st1 uses the function ϕ1 that is the closest
(best approximation) of the function ϕ.

7. Conclusion

In spite of the mathematical development in the domain of the linear pro-
gramming, a lot of problems remain to develop. For it, in our survey, we treated
a theoretical and numerical survey of our new approach, based on the notion
of minorant functions. This allows us to determine the step-size by a simple
and easy manner. As expected, the technique of minorant functions for the
computation of the step-size proves its efficiency, and this by reducing the com-
putational cost in the projective algorithm of Karmarkar compared to the line
search method.

The numerical simulations confirm the effectiveness of our approaches. Our
algorithm converges to the same optimal solution, using any strategy among the
three proposed strategies. The first strategy is the best approach versus com-
puting time and number of iterations. Thus, the numerical tests prove that our
approache was reducing the cost of iteration for the linear programming. Our
survey, opens interesting perspective for the non linear programming (NLP).
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[9] H. Wolkowicz, G. P. H. Styan, Bounds for eigenvalues using traces, Linear Algebra and

Appl.29 (1980), pp. 471-506.

S. Leulmi
Department of Mathematics, Mohamed Khider University of Biskra, Algeria.

E-mail address: as smaleulmi@yahoo.fr

A. Leulmi

Department of Mathematics, Ferhat Abbas University of Setif-1, Algeria.

E-mail address: as smaleulmi@yahoo.fr


