East Asian Math. J.
Vol. 35 (2019), No. 5, pp. 589-595
YNMS
http://dx.doi.org/10.7858/eamj.2019.046

DEFINING FIELDS OF SPECIAL SUPERSINGULAR K3 SURFACES

Junmyeong Jang

Abstract

In this paper, we prove that a special supersingular K3 surface of Artin invariant σ over a field of odd characteristic p has a model over a finite field of $p^{2 \sigma}$ elements.

1. Introduction

Let k be an algebraically closed field of odd characteristic p.
A K3 surface X over k is supersingular if the rank of the Neron-Severi lattice $N S(X)$ is 22. A K3 surface X over k is supersingular if and only if the height of the formal Brauer group $\widehat{B r_{X}}$ is infinite. Let X be a supersingular K3 surface over k. The signature of $N S(X)$ is (1,21). The discriminant group of the Neron-Severi group of X

$$
l(N S(X))=N S(X)^{*} / N S(X)
$$

is isomorphic to $(\mathbb{Z} / p)^{2 \sigma}$. Here σ is an integer between 1 and 10 . We call σ the Artin-invariant of X. The discriminant of the induced quadratic form on $l(N S(X))$ is $(-1)^{\sigma} \Delta$. Here Δ is a non quadratic residue modulo p. Hence there is no σ-dimensional isotropic (\mathbb{Z} / p)-subspace of $l(N S(X)$). The integral lattice satisfying all these conditions is unique up to isomorphism. Therefore the Neron-Severi lattice $N S(X)$ is uniquely determined by the base characteristic p and the Artin-invariant σ up to isomorphism. All the supersingular K3 surfaces of Artin-invariant σ form a family of $\sigma-1$ dimension. A supersingular K3 surface of Artin-invariant 1 is unique up to isomorphism. For detail explanation and references, see [2], section 2 .

[^0]For a K3 surface X over k, we say the order of the image of a natural representation

$$
\rho_{X}: \operatorname{Aut}(X) \rightarrow G L\left(H^{0}\left(X, \Omega_{X / k}^{2}\right)\right)
$$

is the non-symplectic index of X and we denote this by N_{X}. In a previous work ([3]), we showed that if X is a supersingular K3 surface of Artin-invariant σ, the non-symplectic index of $X, N_{X}=p^{m}+1$ for $m=0$ or m is a positive integer such that σ / m is an odd integer. Also we proved that there exists a unique supersingular K3 surface of Artin-invariant σ over k such that the nonsymplectic index is equal to $p^{\sigma}+1$. We call this unique supersingular K3 surface is a special supersingular K3 surface of Artin-invariant σ and we denote this by $X_{p, \sigma}$. Because, over any algebraically closed field of characteristic p, there exists a unique special supersingular K3 surface of Artin-invariant $\sigma, X_{p, \sigma}$ has a model over an algebraic closure of the prime field \mathbb{F}_{p}, in particular, $X_{p, \sigma}$ has a model over a finite field. In [3], we see that many special supersingular K3 surfaces are defined over prime fields. Also we raised a question whether every special supersingular K3 surface has a model over a prime field. In this article, we will give a partial answer to that question. Precisely we prove the following.

Theorem 1.1. A special supersingular $K 3$ surface $X_{p, \sigma}$ has a model over a finite field $\mathbb{F}_{p^{2 \sigma}}$ of $p^{2 \sigma}$ elements.

2. Preliminary : Period space of supersingular K3 surface

In this section, we review the classification of supersingular K3 surfaces in terms of the period space. For the detail, we refer to [3], section 3.

Let k be an algebraically closed field of odd characteristic p. Let W and K be the ring of Witt vectors of k and the fraction field of W respectively. Assume X is a supersingular K3 surface of Artin invariant σ over k. Let us fix an abstract lattice $N_{p, \sigma}$ which is isomorphic to $N S(X)$. Let $l_{p, \sigma}$ is the discriminant group of $N_{p, \sigma}$. Hence $l_{p, \sigma}$ is a 2σ-dimensional \mathbb{F}_{p}-quadratic space. We set a Frobenius semi-linear endomorphism of $l_{p, \sigma} \otimes k, f=i d \otimes F_{k}$. Here F_{k} is the Frobenius morphism of k. A σ-dimensional isotropic k-subspace \mathcal{K} of $l_{p, \sigma} \otimes k$ is a strictly characteristic subspace of $l_{p, \sigma} \otimes k$ if
(1) $\mathcal{K}+f(\mathcal{K})$ is of dimension $\sigma+1$
(2) $\mathcal{K}^{f=i d}=0$

Let \mathcal{K} be a strictly characteristic space of $l_{p, \sigma} \otimes k$. Then

$$
l(\mathcal{K})=\mathcal{K} \cap f^{-1}(\mathcal{K}) \cap \cdots \cap f^{1-\sigma}(\mathcal{K})
$$

is a line in $l_{p, \sigma} \otimes k$. We choose a nonzero vector $v_{1} \in l(\mathcal{K})$. Let $v_{i}=f^{i-1}\left(v_{1}\right)$ for $i=2, \cdots, 2 \sigma$. If the pairing $v_{1} \cdot v_{\sigma+1}=0$, then $\mathcal{K}+f(\mathcal{K})$ is an isotropic subspace of dimension $\sigma+1$. It is impossible, so $v_{1} \cdot v_{\sigma+1} \neq 0$. If we replace v_{1} by ξv_{1}, then v_{i} is changed into $\xi^{p^{i-1}} v_{i}$. After a suitable scalar multiplication, we may assume $v_{1} \cdot v_{\sigma+1}=1$. In this case, v_{1} is uniquely determined up
to multiplication by a $p^{\sigma}+1$-th root of unity. Let $a_{i}=v_{1} \cdot v_{\sigma+i+1} \in k$ for $i=1, \cdots, \sigma-1$. Since the pairing of $l_{p, \sigma} \otimes k$ is defined over $\mathbb{F}_{p}, v_{1+j} \cdot v_{\sigma+1+i+j}=$ $f^{k}\left(v_{1}\right) \cdot f^{k}\left(v_{\sigma+i+1}\right)=F_{k}^{j}\left(a_{i}\right)$. The intersection matrix of $l_{p, \sigma}$ in terms of the base $v_{1}, \cdots, v_{2 \sigma}$ is $\left(\begin{array}{cc}0 & A \\ A^{t} & 0\end{array}\right)$, where

$$
A=\left(\begin{array}{cccccc}
1 & a_{1} & a_{2} & a_{3} & \cdots & a_{\sigma-1} \tag{2.1}\\
0 & 1 & F_{k}\left(a_{1}\right) & F_{k}\left(a_{2}\right) & \cdots & F_{k}\left(a_{\sigma-2}\right) \\
0 & 0 & 1 & F_{k}^{2}\left(a_{1}\right) & \cdots & F_{k}^{2}\left(a_{\sigma-3}\right) \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right) .
$$

For special supersingular K3 surface $X_{p, \sigma}$, the matrix A in (2.1) is equal to the identity matrix of rank σ, I_{σ}. (See [3], page 8) If we replace v_{1} by ξv_{1} for a $p^{\sigma}+1$-th root of unity ξ, then a_{i} is changed into $\xi^{p^{\sigma+i}+1} a_{i}$. We give an action of $\mu_{p^{\sigma}+1}$ on $\mathbb{A}^{\sigma-1}$ by

$$
\xi \cdot\left(x_{1}, \cdots, x_{\sigma-1}\right)=\left(\xi^{p^{\sigma+1}+1} x_{1}, \xi^{p^{\sigma+2}+1} x_{2}, \cdots, \xi^{p^{2 \sigma-1}+1} x_{\sigma-1}\right) .
$$

Then $\left(a_{1}, \cdots, a_{\sigma-1}\right) \in \mathbb{A}^{\sigma-1} / \mu^{p^{\sigma}+1}$ is determined by \mathcal{K}. If $g \in O\left(l_{p, \sigma}\right), g(\mathcal{K})$ is also a strictly characteristic subspace and $f(\mathcal{K})$ gives the same element $\left(a_{1}, \cdots, a_{\sigma-1}\right) \in$ $\mathbb{A}^{\sigma-1} / \mu_{p^{\sigma}+1}$ with \mathcal{K} in the above construction. Let \mathcal{M} be the set of $O\left(l_{p, \sigma}\right)$ conjugacy classes of strictly characteristic subspaces of $l_{p, \sigma}$. By all the above, we have a map

$$
\Phi: \mathcal{M} \rightarrow \mathbb{A} / \mu_{p^{\sigma}+1}, \mathcal{K} \mapsto\left(a_{1}, \cdots, a_{\sigma-1}\right)
$$

It is known that Φ is bijective. ([5], 3.21) In other words, all the $O\left(l_{p, \sigma}\right)$ conjugacy classes of strictly characteristic subspaces are classified by $\mathbb{A}^{\sigma-1} / \mu_{p^{\sigma}+1}$.

Let X be a supersingular K3 surface of Artin-invariant σ over k. The second crystalline cohomology of $X, H_{c r i s}^{2}(X / W)$ is a free W module of rank 22 equipped with a unimodular lattice structure. The cycle map gives the following chain of W-lattices of same rank

$$
N S(X) \otimes W \subset H_{c r i s}^{2}(X / W) \subset N S(X)^{*} \otimes W(\subset N S(X) \otimes K)
$$

The cokernel of the cycle map $\mathcal{K}_{X}=H_{c r i s}^{2}(X / W) /(N S(X) \otimes W)$ is a σ dimensional isotropic k-subspace of $l(N S(X)) \otimes k=\left(N S(X)^{*} \otimes W\right) /(N S(X) \otimes$ $W)$. We say \mathcal{K}_{X} is the period space of X. It is known that \mathcal{K}_{X} is a strictly characteristic subspace of $l(N S(X)) \otimes k \simeq l_{p, \sigma} \otimes k$. ([5], 3.20) Hence we have a map
$\Psi:\{$ isomorphic classes of supersingular K3 surfaces of Artin invariant

$$
\sigma\} \rightarrow \mathcal{M}
$$

Moreover the following is known.
Theorem 2.1 ([6], Theorem III). Ψ is bijective.

Therefore the composition $\Phi \circ \Psi$ is bijective, so the isomorphic classes of supersingular K3 surfaces of Artin-invariant σ are classified by $\mathbb{A}^{\sigma-1} / \mu_{p^{\sigma}+1}$.

3. Galois descent

Let E be a field and F be a finite Galois extension of E. Let $G=\operatorname{Gal}(F / E)$. Set $F^{\prime}=F \otimes_{E} F, F^{\prime \prime}=F \otimes_{E} F \otimes_{E} F$. There are two projections p_{1}, p_{2} : $\operatorname{Spec} F^{\prime} \rightarrow \operatorname{Spec} F$ and three projections $q_{12}, q_{13}, q_{23}: \operatorname{Spec} F^{\prime \prime} \rightarrow \operatorname{Spec} F^{\prime}$. We have the canonical identities

$$
p_{1} \circ q_{12}=p_{1} \circ q_{13}, p_{2} \circ q_{13}=p_{2} \circ q_{23} \text { and } p_{2} \circ q_{12}=p_{1} \circ q_{23}
$$

Let us set $\operatorname{Spec} F^{\prime}=\coprod_{\tau \in G} \operatorname{Spec} F_{\tau}$ and $\operatorname{Spec} F^{\prime \prime}=\coprod_{\tau, \eta \in G} \operatorname{Spec} F_{\tau, \eta}$. Here each of F_{τ} and $F_{\tau, \eta}$ is isomorphic to F over E, so we may set $F_{\tau}=F$. Also, we may regard the restriction $\left(\left.p_{1}\right|_{\operatorname{Spec} F_{\tau}}\right)^{*}: F \rightarrow F_{\tau}$ as the identity for each $\tau \in G$ and $\left(\left.p_{2}\right|_{\text {Spec } F_{\tau}}\right)^{*}=\tau: F \rightarrow F_{\tau}$. In a similar way, we may set $F_{\tau, \eta}=F$. Then $q_{12} \mid \operatorname{Spec} F_{\tau, \eta}: \operatorname{Spec} F_{\tau, \eta} \rightarrow \operatorname{Spec} F_{\tau}$ and we may regard $\left(q_{12} \mid \operatorname{Spec} F_{\tau, \eta}\right)^{*}: F_{\tau} \rightarrow$ $F_{\tau, \eta}$ as the identity. Also we may regard $\left(\left.q_{13}\right|_{\text {Spec } F_{\tau, \eta}}\right)^{*}: F_{\eta} \rightarrow F_{\tau, \eta}$ as the identity and $\left(\left.q_{23}\right|_{\operatorname{Spec} F_{\tau, \eta}}\right)^{*}=\tau: F_{\tau^{-1} \eta} \rightarrow F_{\tau, \eta}$.

Assume X is a scheme over Spec F. Let $\tau X(\tau \in G)$ be the base change of $X / \operatorname{Spec} F$ by $\tau: F \rightarrow F$.

A descent datum of $X / F / E$ is an isomorphism $\gamma: p_{1}^{*} X \rightarrow p_{2}^{*} X$ over Spec F^{\prime} such that

$$
q_{23}^{*}(\gamma) \circ q_{12}^{*}(\gamma)=q_{13}^{*}(\gamma): q_{12}^{*} p_{1}^{*} X \rightarrow q_{23}^{*} p_{2}^{*} X
$$

To give a descent datum of $X / F / E$ is equivalent to the following :
(1) There is an F-isomorphism $g_{\tau}: X \rightarrow \tau X$ for all $\tau \in G$.
(2) $(\operatorname{Spec} \tau)^{*}\left(g_{\eta}\right) \circ g_{\tau}: X \rightarrow \tau X \rightarrow \tau(\eta X)=\tau \eta X$ is equal to $g_{\tau \eta}: X \rightarrow$ $\tau \eta X$.
Here, note that for $\tau, \eta \in G, \tau \eta=\tau \circ \eta \in G$ and $\operatorname{Spec} \eta \circ \operatorname{Spec} \tau=\operatorname{Spec} \tau \eta$. Hence $\tau(\eta X)$, the base change of ηX by τ is equal to $\tau \eta X$, the base change of X by $\tau \eta$.

If there is an F-isomorphism $\beta: X \rightarrow Y \otimes_{E} F$ for an E-scheme Y, it gives the canonical descent datum

$$
p_{1}^{*} X \xrightarrow{p_{1}^{*}(\beta)} p_{1}^{*}\left(Y \otimes_{E} F\right)=p_{2}^{*}\left(Y \otimes_{E} F\right) \xrightarrow{p_{2}^{*}\left(\beta^{-1}\right)} p_{2}^{*}(X) .
$$

This kind of descent datum is called an effective descent datum. It is known that if X / F is a quasi-projective variety, every descent datum of $X / F / E$ is an
effective descent datum. ([4], 16.25)
Now assume E is a finite field $\mathbb{F}_{p^{r}}$ and F is a finite Galois extension of $E, \mathbb{F}_{p^{r m}}$. Let α be the p^{r}-th power Frobenius morphism of F. Hence $G=$ $\operatorname{Gal}(F / E)=<\alpha>$ and $G \simeq \mathbb{Z} / m$.

Lemma 3.1. Assume X is a quasi-projective variety over F. If there exists an F-isomorphism $g_{\alpha}: X \rightarrow \alpha X$ such that the composition
$\alpha^{(m-1) *}\left(g_{\alpha}\right) \circ \alpha^{(m-2) *}\left(g_{\alpha}\right) \circ \cdots \circ \alpha^{*}\left(g_{\alpha}\right) \circ g_{\alpha}: X \rightarrow \alpha X \rightarrow \cdots \rightarrow \alpha^{m-1} X \rightarrow \alpha^{m} X=X$ is the identity, then $X=Y \otimes_{E} F$ for a variety Y over E.

Proof. It is enough to give a descent datum for $X / F / E$. We set $g_{i d}: X \rightarrow X=$ $i d$ and

$$
g_{\alpha^{i}}=\alpha^{(i-1) *}\left(g_{\alpha}\right) \circ \cdots \circ \alpha^{*}\left(g_{\alpha}\right) \circ g_{\alpha}: X \rightarrow \alpha^{i} X
$$

for $1 \leq i \leq m-1$. And we set

$$
g=\coprod_{0 \leq i \leq m-1} g_{\alpha^{i}}: p_{1}^{*} X=\amalg X \rightarrow \coprod \alpha^{i} X=p_{2}^{*} X
$$

If $i+j \leq m-1$, then, by definition,

$$
\alpha^{i *}\left(g_{\alpha^{j}}\right) \circ g_{\alpha^{i}}=g_{\alpha^{i+j}}=g_{\alpha^{j} \alpha^{i}}: X \rightarrow \alpha^{i} X \rightarrow \alpha^{j} \alpha^{i} X
$$

If $i+j \geq m$, then

$$
\alpha^{i *}\left(g_{\alpha^{j}}\right) \circ g_{\alpha_{i}}=g_{\alpha^{i+j-m}} \circ i d=g_{\alpha^{j} \alpha^{i}}: X \rightarrow X \rightarrow \alpha^{i+j-m} X=\alpha^{j} \alpha^{i} X
$$

Therefore g is a descent datum for $X / F / E$.

4. Proof of Theorem 1.1

Let k be an algebraic closure of the prime field \mathbb{F}_{p} for an odd prime number p. Let X be a supersingular K3 surface of Artin-invariant σ over k. The Frobenius morphism F_{k} is a topological generator of $\operatorname{Gal}\left(k / \mathbb{F}_{p}\right)$. Let $F_{k}^{r} X$ be the base change of X by $F_{k}^{r}: k \rightarrow k$.

The induced map $F_{k}^{r *}: N S(X) \rightarrow N S\left(F_{k}^{r} X\right)$ is an isomorphism. Also $N S(X)$ and $N S\left(F_{k}^{r} X\right)$ are isomorphic to $N_{p, \sigma}$. We may set $N S(X)=N_{p, \sigma}=N S\left(F_{k}^{r} X\right)$ and we may regard $F_{k}^{r *}: N S(X) \rightarrow N S\left(F_{k}^{r} X\right)$ as the identity map of $N_{p, \sigma}$. We let $F_{W}: W \rightarrow W$ and $F_{K}: K \rightarrow K$ be the Frobenius morphisms of W and K respectively. Let W_{r} be the free W-module of rank $1, W$ via $F_{W}^{r}: W \rightarrow W$.

The crystalline cohomology $H_{c r i s}^{2}\left(F_{k}^{r} X / W\right)$ is identified with $H_{c r i s}^{2}(X / W) \otimes W_{r}$ and the following diagram commutes.

Here the vertical arrows are the cycle maps. Set $\mathbf{f}=i d \otimes F_{K}: N_{p, \sigma} \otimes K \rightarrow N_{p, \sigma} \otimes$ K. If we regard $H_{c r i s}^{2}(X / W)$ and $H_{c r i s}^{2}\left(F_{k}^{r} X / W\right)$ as W-lattices inside $N_{p, \sigma} \otimes K$, then $H_{c r i s}^{2}\left(F_{k}^{r} X / W\right)=\mathbf{f}^{r}\left(H_{c r i s}^{2}(X / W)\right)$. Therefore $\mathcal{K}\left(F_{k}^{r} X\right)=f^{r}(\mathcal{K}(X))$ in $l_{p, \sigma} \otimes k$.

Now assume X is a special supersingular K3 surface of Artin-invariant σ over k. Then the matrix A in (2.1) is the identity matrix I_{σ} and it is not difficult to see that $f\left(v_{2 \sigma}\right)=v_{1}$ in the notation of section 1. It follows that $\mathcal{K}\left(F_{k}^{2 \sigma} X\right)=\mathcal{K}(X)$. Now it is obvious that $F_{k}^{2 \sigma *}: N S(X) \rightarrow N S\left(F_{k}^{2 \sigma} X\right)$ sends the ample cone to the ample cone and the period space to the period space. Hence, by the crystalline Torelli theorem ([6] Theorem II, [1] Theorem 5.1.9), there exists a unique isomorphism $g_{2 \sigma}: F_{k}^{2 \sigma} X \rightarrow X$ over k such that

$$
g_{2 \sigma}^{*}=F_{k}^{2 \sigma *}: N S(X) \rightarrow N S\left(F_{k}^{2 \sigma} X\right)
$$

We set $E=\mathbb{F}_{p^{2 \sigma}}$ and $F=\mathbb{F}_{p^{2 \sigma m}}$ such that $X, g_{2 \sigma}$ and all the classes of $N S(X)$ are defined over F. Let α be the $p^{2 \sigma}$-th power morphism of F. Then

$$
\alpha^{(m-1)^{*}}\left(g_{2 \sigma}\right) \circ \cdots \alpha^{*}\left(g_{2 \sigma}\right) \circ g_{2 \sigma}: X \rightarrow X
$$

induces the identity morphism on $N S(X)$, so it is the identity map of X by the crystalline Torelli theorem. Therefore $g_{2 \sigma}$ satisfies the condition of Lemma 2.1 and it gives a descent datum for $X / F / E$ and the proof is complete.

References

[1] Bragg, D. and Lieblich, M. Twistor spaces for supersingular K3 surfaces, Arxiv:1804.07282v5.
[2] Jang,J. Representation of the automorphism group of a supersingular $k 3$ surface of Artininvariant 1 over odd characteristic, J. Chungcheong Math. Soc. 27, no.2, 2014, 287-295.
[3] Jang, J. The non-symplectic index of supersingular K3 surfaces, to appear at Taiwanese journal of mathematics.
[4] Milne, J. Algebraic Geometry, Lecture note, https://www.jmilne.org/math/CourseNotes/AG510.pdf
[5] Ogus, A. Supersingular K3 crystal, Astérisque 64, 1979, 3-86
[6] Ogus, A. A crystalline Torelli theorem for supersingular K3 surfaces, Prog. Math. 36, 1983, 361-394.

Junmyeong Jang
Department of Mathematics
University of Ulsan
Daehakro 93, Namgu Ulsan 44610, Korea
E-mail address: jmjangl@ulsan.ac.kr

[^0]: Received March 22, 2019; Accepted September 30, 2019.
 2010 Mathematics Subject Classification. 14J20, 14J28.
 Key words and phrases. special supersingular K3 surface, Galois descent.
 This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology [2018R1D1A1B07044995].

