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NECESSARY CONDITIONS FOR OPTIMAL CONTROL
GOVERNED BY SOME ODE-PDE SYSTEMS

SANG-UK Ryu

ABSTRACT. This paper is concerned with the necessary conditions for op-
timal control problem governed by some ODE-PDE systems. That is, we
obtain the necessary conditions for optimal control by showing the differ-
entiability of the solution with respect to the control.

1. Introduction

In this paper, we consider the necessary conditions for optimal control prob-
lem governed by some controlled ODE-PDE systems

0 02 )
Y—ald Ay —fy+gp  in Ix(0,T),

ot Ox?

Jdp .

a :fyfhpfu(t)p in I x (OvT]v (11)
% 0.0 = Y1 o=

%(Oat) - ax(L7t) =0 on (OvT]v

y(z,0) = yo(z), p(z,0)=po(z) in I.

Here, I = (0, L) is a bounded interval in R. y(z,t) and p(x,t) are the variable
representing tree densities of young age and old age class in I at time t. d >0
is the diffusion rate of the young trees. g > 0 is fertility of the species. h > 0
and f > 0 denote death and aging rates. y(p) is a mortality rate function of
the young trees with v(p) = a(p — b)? + ¢ (a,b,c¢ > 0). u(t) denotes the control
term.

More precisely, we consider the necessary conditions for optimal control min-
imizing the cost functional J(u) of the form

T T
J(U):/O IIy(U)*deim)dH/o llp(w) = pallZcrydt + yllulfz 0.1y
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where y(u) and p(u) are the solution of (1.1) corresponding to u. Here, yq and
pa are the given ideal (or desired) state and v > 0 is the control parameter.

A simple model (1.1) for mono species distribution with mixed ages in forest
was introduced by Antonovsky et al.([1]). In [2], authors analyzed time behavior
of small perturbations of the standing front as solutions of (1.1). In [6], the
author showed the global existence of strong solution and the stability of the
solution with respect to the control.

The optimal control problem for the ODE-PDE systems was studied in a few
papers. The optimal control problem for FitzHugh-Nagumo equation was con-
sidered in [4]. In [3], the optimal control problem for prey-predator as the ODE-
PDE systems was studied. Ryu([5]) considered the local existence of strong
solution for (1.1) and the existence of optimal control. In this paper, we obtain
the necessary conditions for optimal control by showing the differentiability of
the solution with respect to the control.

The paper is organized as follows. Section 2 is a preliminary section review-
ing the global existence of strong solution for (1.1) and the existence of optimal
control. The necessary conditions for optimal control are derived in Section 3.

Notations. Let J be an interval in the real line R. Let H be a Hilbert
space. LP(J;H), 1 < p < oo, denotes the LP space of H-valued measurable
functions in J. C(J;H) denotes the space of H-valued continuous functions in
J. We denote WY2(J;H) = {y : y9) € L?(J;H), j = 0,1}, where y\9) is the
derivative of order j of y in the sense of distributions. For simplicity, we shall
use a universal constant C' to denote various constants which are determined in
each occurrence in a specific way by a,b,c,d, f,g,h, m, [ and 1.

2. Preliminaries

In this section, we recall the global existence of strong solution for (1.1) and
the existence of optimal control(see [5] and [6]). We rewrite (1.1) as an abstract
semilinear equation in a Hilbert space H = L2(I) x L2(I). To this end, let us
define the operator A : D(A) C H — H as follows:

(4 () v (e

Here, D(A) = {Y = (1) € H>(I) x L(1), 3(0) = 94(L) = 0}. Then A is a
self adjoint dissipative operator in H.

Let F(t,Y(t)) : [0,T] x H — H be the nonlinear operator defined by

(= (p)y = fy+gp
b Y) = ( fy—hp—u(t)p )
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Then, (1.1) is expressed as an abstract semilinear equation
dy

e +AY = F(t,Y(t)), 0<t<T,

Y(0) =Y
in the space H. Here, Yy = (Zg) and Uag = {u € H'(0,T); ||lull g2 o,y < m, 0 <
u(t) < 1}. Using a truncation procedure for F'(-,Y(-)) and some estimates, we
have the followig result for the global strong solution to (1.1)(see [5] and [6]).

Proposition 2.1. For any 0 < yo € H*(I) and 0 < po € H*(I) and u € Uyg,
(1.1) has a unique global strong solution' Y = (g) € W12(0,T;H) such that

0<ye L=((0,T) x 1)1 L=(0,T5 H(I)) 1 L(0, T; H2(1)),
0<peL>(0,T) x I)NL>0,T; H(I)).
Moreover, the estimates

|5
ot

and

. oo <C (21
LA0.TsI2(D) + yllez0,7;m2 1)) + Wl () + 1Yl 2o 0,7y x1) < (2.1)

dp
152 om0y + iy < (2:2)

hold, where C is also determined by ||yol|L(ry and ||poll Lo (r)-

Moreover, we obtain the continuous dependence of solution on the control(see
[6])-
Proposition 2.2. For any uy,us € Uyq, we have
ly2.() = y2(OlIZ2(r) + lo2(8) = p2 ()72 )
< Cllua(t) —w2(®)lipor), 0<t<T, (23)
where (yl,pl) and (yg,pg) are the solutions of (1.1) with respect to uy; and us,
respectively.

Let T > 0 be such that for each u € Uy,q, (1.1) has a unique strong solution
Y(u) = (414) € Wh2(0,T;H) satisfying (2.1) and (2.2). Thus, we consider the
following optimal control problem

(P) minimize J(u)
with the cost functional J(u) of the form

T T
T(u) = / () — yalZarydt + / 10(u) — pallZarydt
a0z, € Una.

Here, y4,pa € L*(0,T; H'(I)) are fixed elements. + is a positive constant.
Uga = {u € HY0,T); lull g1 0,r) < m, 0 < u(t) < 1}. Then, we obtain the
existence result(see [5]).
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Proposition 2.3. There exists an optimal control @ € U,q for (P) such that
J(a) = min J(u).

u€Uqq

3. Necessary conditions of optimal control

In this section, we derive the ncessary conditions for optimal control by show-
ing the differentiability of the solution with respect to the control. Let Y = (Z)
be a state solution of (1.1) corresponding to the control u. At first, we consider
the following linear systems

az
S HAZ-Fy(tY)Z=B,(Y), 0<t<T,
Z(0)=0

in the space H. Here,

Py (67— (v(p)z —2a(p — byw — fz + gw>7 Buy) (U(o))’ . ()

fz—hw—u(t)w

In detail, this can be written as

0z 0%z :

O — g —(p)e—2alp—Dyw— fz+guw i Ix(0,T],

% =fz—hw—ut)w+ov(t)p in Ix(0,7T], (3.1)
0z 0z

%(O,t) = %(L,t) =0 on (0,7],

z(z,0) =0, w(z,0)=0 in I.

Proposition 3.1. Under the hypotheses of Proposition 2.1, if u,v € Uyq and
Y = (z) be a strong solution of (1.1) corresponding to u, then (8.1) has a unique

strong solution Z = (7) € W'2(0,T; H) such that

2z € L>®((0,T) x I) N L*>(0,T; H*(I)) N L*(0, T; H*(I)),
w e L®((0,T) x I) N L>®(0,T; L*(I)).

Proof. The result can be shown completely analogously to Proposition 2.1.
Since (3.1) is linear, a truncation procedure is not needed. Then, we obtain
that there exists a unique strong sloution Z = (Z) € Wh2(0,T;H) such that
2z € L>(0,T; H(I)) N L?(0,T; H*(I)).

Now, we will show z,w € L>°((0,T) x I) by three steps.
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Step 1. Multiply the first equation of (3.1) by z and integrate the product
in I. Then, we have

1 L

2 dt

L L L L
< / 22dx 7/ (v(p) + f)2Pdx — 2a/ (p — b)ywzdzx +g/ wzdx
0 0 0 0

< C(Iyleqry + ol +1) (e + 0l ), (3:2)

where § = min{d, 1}. Multiply the second equation of (3.1) by w and integrate
the product in I. Then, we have

1d L L L
Sq 2davzf/o zwdx — (h—|—u(t))/0 w2dx+/o v(t)pwdx  (3.3)

1
< C(I11320r) + Iwllfe ) + 50O ol
Thus, we obtain from (3.2) and (3.3) that

d L
il (2% + w?)da + 20] 2|31 1y

< CylEeqry + ol + 1) (I23ery + 03y ) + 02 Ollollzn. (34)
By using Gronwall’s Lemma, we have
Iz 720y + w72y <C, 0<t < T, (3.5)
If we use (3.2), we obtain

t
| 1@l pds<c. vsisT. (3.6)

Step 2. We will estimate the norm ||w| pe(r). Since u(t),v(t) and p(z,t) are
non-negative, we have

f/ e~ Ja (T o (g s)ds+/0 e~ JL ATy (5)p(, s)ds  (3.7)

<f/ " (a 8)|ds+/0 e M0 (s)p(x, 5)ds.

Since

t t
H/ e_h(t_s)\z(x,sﬂdsH < / e_h(t_s)Hz(m,s)||H1(1)ds (3.8)
0 HY(I) 0

1
< mHZHL‘z((o,s;Hl(I))
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and

t ¢
H/ e_h(t_s)v(s)p(m,s)dsHHl(I) §/ e_h(t_s)Hv(s)p(x,S)HHl(I)ds (3.9
0

0

< <= IOl ol ooy,
we obtain from (3.6), (3.7), (3,8), (3.9) and p € L>°(0,T; H'(I)) that
wll gy < C.
Since H'(I) C L*(I), we have
lwlLee(ry < C. (3.10)

Step 3. We will estimate the norm ||z|| L (ry. Multiply the first equation of

Z

(3.1) by —2-% and integrate the product in I. Then, we have

1d (L1922 L2z 2
A B i —’d
th/o ‘ S /0 a2zl **

o 9z o 02z Loz
_/0 'y()azdﬂc—i—Qa/o (p=Db)y Ywo— dx—l—f/ a2dx g/ wwdaj.

Therefore, it follows that

2dt ‘d+f/‘ ‘d$<c/ w? ()22 + (p — )*yw? ) da.

Since

L
/ (w2+v(p) +(p—0)%y? Q)dx
0
< ClplE y + Wl ry + oWty + 1) (12132 + 0l ),

it follows from (2.1), (2.2) and (3.5) that

L L
0z 2 0z |2
L g 42 ’—’d <C, 0<t<T.
dt &T’ v +2f /0 ozl “= -
If we solve the differential inequality, we have
H %‘ 2
Ox llL2(1)

From (3.5) and (3.11). we obtain

C, 0<t<T. (3.11)

2l o1y < Cllzllar () < C.
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Proposition 3.2. The mapping u — Y (u) from U,q into WH2(0,T;H) is
differentiable in the sense

Y(uc) = Y(u)

— Z strongly in L*(0,T;H)
€

as € = 0, where u,v € Uyq and u = u+ ev € Uyq. Here, Y(u,) (y(“f)) and

P(ue)
Y(u) = (zgzg) are the solution of (1.1) corresponding to ue and u, respectively.

Moreover, Z = (z)) satisfies the linear equations (3.1).

Proof. Let u,v € Uyg and 0 < e < 1. Let Y, = (g) and Y = (%) be the strong
solutions of (1.1) corresponding to u. and w, respectively.
Step 1. Y. =Y strongly in L*(0,T;H) as e — 0. By using (2.3), we obtain

lye (£) = (O Z2r) + llpe(®) = pB) 172,
< Cllue(t) = u®)n o) < Cllvtlnery, 0<t<T.

As € — 0, we infer that

Ye — Y, pe — p strongly in L?(0,T; L*(I)). (3.12)

Step 2. If we let z. = = and w, = 2=£, then Z, = (zf) satisfy the
following equations

0z, 0%z, .

T d o Y(pe)ze — alpe + p — 2b)ywe — fze + gwe in I x (0,7,
861126 = fze — hwe —u(H)we +v(t)p in I x (0,77, (3.13)
0z, 0z, B

%(O,t) = o (L,t) =0 on (O,T],

2:(2,0) =0, w(z,0)=0 in I.

Indeed, by using the similar methods used in Proposition 3.1, we see that there
exists a unique strong solution Z, = ( ) € W2(0,T;H) such that

Ze
We

ze € L=((0,T) x I) N L>=(0,T; HY(I)) N L*(0, T; H*(I)),
we € L®((0,T) x I) N L>(0,T; L*(I)).
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Step 3. Z. — Z strongly in L*(0,T;H) as e — 0. From (3.1) and (3.13), we
see that Z = z. — z and W = w. — w satisfy the following equations

0z 0%z

o daf [V(pe)Z + (v(pe) — () 2] (3.14)

—af(pe+p—20)0 + (pc — pJwly — fZ+gw in I x(0,T],

%—Z) =fZ —hw —u(t)w+ev(t)w in I x (0,77,
0z 0z
a (0 t) ax (L7t) - 0 o1 (07T]?

Z(z,0)=0, w(z,0)=0 in I.

Multiply the first equation of (3.14) by 2z and integrate the product in I. Then,
we have

1d 22
2dt/ dm—i—d/‘ ‘dm

L L
= [Ma02ar~ [ 600 @)zt 0 [ (oot - iz
L

L L
— a/ (pe — p)ywide — f Fdx + g/ wZdx.
0 0 0
Since

L L
~ 2 ~
| = )zzan < (ol + oliein) [ (o= p) e+ ClEl

< C(Hpeﬂiw(z) + ||P||%oo(1)) ||z||im(I)Hp€ - P||i2(1) + C||5||%2(1)7

L
| owizte < (1l + ol ) (12020 + 1120

and
L
_ 2 2 2 2112
/0 (pe — p)ywzde < Clyll 7o pllwllzeeyllpe = pllz2cry + ClIZN T2y
we obtain
Ld 2d < C(yllFoe 1)+l F e 1y Flloel Zoo 1y +1) (121172 1)+ 11017
Sdr T < YllLoo (1) TP L= (1) Tl PellLoo () 2z TIWllL2(1)

+0(||pe||w> ol ) + 11y ) (12030 1y + N0l ey Yl = Pl
(3.15)
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Multiply the second equation of (3.14) by w and integrate the product in I.
Then, we have

1 d L L L
~2dz =f Zﬁ)dx—/ ue(t)zbzdx—e/ v(t)wwdx
2
~ ~ €
< O(IEhe + 8132 0r)) + So%wliec.  (316)
Then, we obtain from (3.15) and (3.16) that
L
& ) de < O (ol iy ol e Hlodl By +1) (1208 B
dt J, = YllLee (1) TP Loo (1) Tl1PellLoe (1) L2(I) L2(I)
+C (loel ety HolE (1 191w 1)) (120 oty 01w 1)) Noe =N 0y €202 a0l

By using Gronwall’s Lemma and (3.12), we have

L
/o (22 + @*)dzx §C<||Pe||2Loo((o,T))x1) + ”pH%C’O((O,T))xI) + Hy”ZL‘X’((O,T))xI))

X (||Z||2Loo((o,T))x1) + ”wH%QO((O,T))xI)) e — P||2L2(0,T;L2(1))

+ 62||U||2L2(1) ”wH%OC((],T;L?(I))
—0

as € = 0. Hence, we infer that
Ze = 2, we — w strongly in L*(0,T; L*(I)).
O

Theorem 3.3. Let @ be an optimal control of (P) and let Y = (g) be the

optimal state, that is Y is the solution to (1.1) with the control ii. Then, there
exists a unique solution P = (Z;) € W2(0,T;H) such that

p1 € L*((0,T) x I) N L>(0,T; H'(I)) N L?(0,T; H*(I)),
p2 € L((0,T) x I) N L>(0,T; L*(I))

to the linear problem

0 0? .
—%— apl Y(P)p1 + fp1 — fra =9 —ya in I x(0,T],
0 )
—ﬂ +2a(p —b)yp1 — gp1 + hpa +u(t)p2 = p—pa in 1 x(0,T], (3.17)
3231 Op1
L T
5g (0t) =5~ (L,t) =0 on (0,T],

p(z,T)=0, po(z,T)=0 in I
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Moreover, U satisfies

T
/ (D2, (v —w)p) 2(nydt + (U, v — U201y = 0 for all v € Uygq.
0

Proof. The existence and uniqueness of the strong solution for (3.17) can be
obtained by employing the same methods used in Proposition 2.1. Let @ be an
optimal control of (P). Let @ and ue = @+ €(v — @) € Uyq, 0 < € < 1. Since 4
is optimal, we have J(u.) — J () > 0, i.e.,

T T
/ (Ye + U — 2Ya, Ye — U) £2(1)dt + / {(pe + P —2pd, pe — P)r2(n)dt
0 0
+ y{ue + @, €(v — @) 20,7) = 0,

where y. and p, are solution of (1.1) with respect to u.. By dividing € > 0, it
can be written as

T T
/ <ye+g_2ydaze>L2(I)dt+/ <p6 +ﬁ—2pd,w€>Lz(1)dt
0 0

+ v{ue + w,v — L_L>L2(0,T) >0,

where 2z, = Y= and w, = 2<=£. Since y. — ¥, pe — pstrongly in L2(0, T; L*(I))
and 2, — z, w. — w strongly in L?(0,T; L*(I)), we obtain

T T
/ @_ydaZ>L2(I)dt+/ (P — pa,w)p2(rydt +v(U,v — @) 20,1y > 0
0 0

as € — 0. Here, Z = (Z) is the solution of (3.1) with respect to % and v —
instead of u and v. Then, we have

T
/ (Y — ya, 2) L2 (nydt
0

T 2
_ Ip 9°p1 _
—/O < ~ 5 ~ 452 TP+ for— fp2, Z>L2(I)dt

T a Py - T
:/0 <P17a —dﬁ +W(P)Z+fZ>L2(I)dt+/O (P2, —f2)L2(rydt

p — pd,w)r2(n)dt

Op2

/0

- / — F242a(p — D)p1 — gp1 + hpo + U(t)paw) | dt
0 L2(I)
I

T
P27 5 +hw+u() >L2(1)dt+/ <P172a( —b)yw — gw) L2 (1) dt.
0



By

NECESSARY CONDITIONS FOR OPTIMAL CONTROL 557
using (3.1) having @ and v — @ instead of u and v, we have

T T
/ <§*yd,Z>L2(1)dt+/ (P — pa,w)2(ndt
0 0

T 2
0z 0%z _ _ _
—/0 <;01, % d@ +v(p)z + fz+2a(p — b)jw — gw>L2(I)dt

T
ow
—+hw — u(t dt
+/0 <p2, 3t+ w = fz+u( )w>L2(I)

T
Z/ (p2, (v —)p) L2(r)dl-
0

Hence, we obtain

(1]

(2]

(3]

(4]

(5]
[6]

T
/ (D2, (v —1)p) r2(rydt + y(U,v — @) 20,y > 0 for all v € Upq.
0
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