East Asian Math. J.
Vol. 35 (2019), No. 5, pp. 559-568
YNMS
http://dx.doi.org/10.7858/eamj.2019.044

A FIXED POINT APPROACH TO THE STABILITY OF A QUADRATIC-CUBIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

$$
\begin{aligned}
& \text { AbStract. In this paper, we investigate the stability problems for a func- } \\
& \text { tional equation } \\
& \qquad \begin{array}{c}
f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+6 f(x)-2 f(2 y) \\
\qquad+12 f(y)-4 f(-y)=0
\end{array}
\end{aligned}
$$

by using the fixed point theory in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, Ulam [14] posed the problem concerning the stability of group homomorphisms. In the following year, Hyers [7] gave an affirmative answer to this problem for additive mappings between Banach spaces. Thereafter, many mathematicians have dealt with this problem (cf. [4, 9, 10, 11, 12]).

Throughout this paper, let V and W be real vector spaces and Y be a real Banach space.

For a given mapping $f: V \rightarrow W$, we use the following abbreviations

$$
\begin{aligned}
& f_{o}(x):=\frac{f(x)-f(-x)}{2}, \quad f_{e}(x):=\frac{f(x)+f(-x)}{2}, \\
& Q f(x, y):=f(x+y)+f(x-y)-2 f(x)-2 f(y), \\
& C f(x, y):=f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y), \\
& Q^{\prime} f(x, y):=f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y)-24 f(y), \\
& E f(x, y):=f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y), \\
& D f(x, y):=f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+6 f(x)-2 f(2 y) \\
&+12 f(y)-4 f(-y)
\end{aligned}
$$

for all $x, y \in V$. Each solution of $Q f(x, y)=0, C f(x, y)=0$, and $Q^{\prime} f(x, y)=$ 0 are called a quadratic mapping, a cubic mapping, and a quartic mapping,

[^0]respectively. Every mapping $f: V \rightarrow W$ is called a QCQ (quadratic-cubicquartic) mapping if f can be expressed by the sum of a quadratic mapping, a cubic mapping, and a quartic mapping. Gordji et al. [5, 6] proved the stability of the two kinds of function equations whose solutions are QCQ mappings.

Now, we consider the mapping $f: V \rightarrow W$ satisfying the following functional equation

$$
\begin{equation*}
D f(x, y)=0 \tag{1}
\end{equation*}
$$

for all $x, y \in V$. The mapping $f(x)=a x^{4}+b x^{3}+c x^{2}$ is a solution of this functional equation, where $f: \mathbb{R} \rightarrow \mathbb{R}$ and a, b, c are real constants.

In this paper, we will show that every solution of functional equation (1) is a QCQ mapping and we introduce a strictly contractive mapping which allows us to use the fixed point theory in the sense of L. Cădariu and V. Radu [1, 2]. And then we can adopt the fixed point method for proving the stability of the functional equation (1). Namely, starting from the given mapping f that approximately satisfies the functional equation (1), a solution F of the functional equation (1) is explicitly constructed by using the formula

$$
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left[\frac{(-1)^{n-i} 16^{i}}{64^{n}} f_{o}\left(2^{2 n-i} x\right)+\frac{(-1)^{n-i} 20^{i}}{64^{n}} f_{e}\left(2^{2 n-i} x\right)\right]
$$

or

$$
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left[20^{i}(-96)^{n-i} f_{o}\left(\frac{x}{2^{2 n-i}}\right)+20^{i}(-64)^{n-i} f_{e}\left(\frac{x}{2^{2 n-i}}\right)\right]
$$

which approximates the mapping f.

2. Main theorems

The following fixed point theorem of Margolis and Diaz [3] is necessary to prove the main theorems.

Theorem 2.1. ([3], [13]) Assume that (X, d) is a complete generalized metric space, which means that the metric d may assume infinite values, and $J: X \rightarrow$ X is a strictly contractive mapping with the Lipschitz constant $0<L<1$. It then holds that, for each given $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty \text { for all } n \in \mathbb{N}_{0}
$$

or there exists a nonnegative integer k such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq k$;
(2) The sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in $Y=\left\{y \in X: d\left(J^{k} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Lemma 2.2. ([8]) Suppose $f: V \rightarrow W$ is an odd mapping satisfying $E f(x, y)=$ 0 for all $x, y \in V$ and $f(2 x)=8 f(x)$ for all $x \in V$. Then f is a cubic mapping.

Lemma 2.3. ([8]) Suppose $f: V \rightarrow W$ is an even mapping satisfying the equalities $E f(x, y)=0$ for all $x, y \in V$ and $f(2 x)=4 f(x)$ for all $x \in V$. Then f is a quadratic mapping.

In the following theorem, we investigate the general solution of the functional equation $D f(x, y)=0$.
Theorem 2.4. A mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$ if and only if f is a $Q C Q$ mapping.

Proof. First, we assume that a mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$. Then, the odd mapping f_{o} satisfies the equalities $E f_{o}(x, y)=$ $D f_{o}(x, y)=0$ for all $x, y \in V$ and $f_{o}(2 x)-8 f_{o}(x)=\frac{-D f_{o}(0, x)}{2}=0$. It follows from Lemma 2.2 that f_{o} is a cubic mapping. Let $f_{1}(x):=\frac{-f_{e}(2 x)+16 f_{e}(x)}{12}$ and $f_{2}(x):=\frac{f_{e}(2 x)-4 f_{e}(x)}{12}$ for all $x \in V$.

By a direct calculation and using the assumption that $D f(x, y)=0$ for all $x, y \in V$, we obtain the equalities $f_{1}(2 x)=4 f_{1}(x)$ and $f_{2}(2 x)=16 f_{2}(x)$ from the equalities

$$
\begin{aligned}
4 f_{1}(x)-f_{1}(2 x) & =f_{2}(2 x)-16 f_{2}(x) \\
& =\frac{f_{e}(4 x)-20 f_{e}(2 x)+64 f_{e}(x)}{12} \\
& =\frac{D f_{e}(2 x, x)+4 D f_{e}(x, x)}{12}
\end{aligned}
$$

for all $x \in V$. Since $f_{1}(2 x)=4 f_{1}(x)$ and $f_{2}(2 x)=16 f_{2}(x)$ hold for all $x \in V$, the equalities $E f_{1}(x, y)=0$ and $Q^{\prime} f_{2}(x, y)=0$ can be derived from the equalities $E f_{1}(x, y)=D f_{1}(x, y)$ and $Q^{\prime} f_{2}(x, y)=D f_{2}(x, y)$ for all $x, y \in V$. According to Lemma 2.3, f_{1} is a quadratic mapping. Moreover, f_{2} is a quartic mapping because $Q^{\prime} f_{2}(x, y)=0$ holds for all $x, y \in V$.

Conversely, assume that f_{1}, f_{2}, f_{3} are mappings such that the equalities $f(x):=f_{1}(x)+f_{2}(x)+f_{3}(x), Q f_{1}(x, y)=0, C f_{2}(x, y)=0$, and $Q^{\prime} f_{3}(x, y)=0$ hold for all $x, y \in V$. Then the equalities $f_{1}(x)=f_{1}(-x), f_{2}(x)=-f_{2}(-x)$, $f_{3}(x)=f_{3}(-x) f_{1}(2 x)=4 f_{1}(x), f_{2}(2 x)=8 f_{2}(x)$, and $f_{3}(2 x)=16 f_{3}(x)$ hold for all $x \in V$. From the above equalities, we obtain the equalities

$$
\begin{aligned}
& D f_{1}(x, y)=Q f_{1}(x, 2 y)-4 Q f_{1}(x, y) \\
& D f_{2}(x, y)=C f_{2}(x, y)-C f_{2}(x-y, y) \\
& D f_{3}(x, y)=Q^{\prime} f_{3}(x, y)
\end{aligned}
$$

for all $x, y \in V$, which mean that

$$
D f(x, y)=D f_{1}(x, y)+D f_{2}(x, y)+D f_{3}(x, y)=0
$$

as we desired.
In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation (1) by using the fixed point theory.

Theorem 2.5. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2}
\end{equation*}
$$

holds for all $x, y \in V$ and $f(0)=0$. If there exists a constant $0<L<1$ such that φ satisfies the condition

$$
\begin{equation*}
\varphi(2 x, 2 y) \leq 2(\sqrt{41}-5) L \varphi(x, y) \tag{3}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution $F: V \rightarrow Y$ of (1) satisfying the inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{1}{64(1-L)} \Phi(x) \tag{4}
\end{equation*}
$$

for all $x \in V$, where $\Phi(x):=\varphi(2 x, x)+4 \varphi(x, x)+2 \varphi(0, x)+\varphi(-2 x,-x)+$ $4 \varphi(-x,-x)+2 \varphi(0,-x)$. In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left[\frac{(-1)^{n-i} 16^{i}}{64^{n}} f_{o}\left(2^{2 n-i} x\right)+\frac{(-1)^{n-i} 20^{i}}{64^{n}} f_{e}\left(2^{2 n-i} x\right)\right] \tag{5}
\end{equation*}
$$

for all $x \in V$.

Proof. Let S be the set of all functions $g: V \rightarrow Y$ with $g(0)=0$. We introduce a generalized metric on S by

$$
d(g, h)=\inf \left\{K \in \mathbb{R}_{+}:\|g(x)-h(x)\| \leq K \Phi(x) \text { for all } x \in V\right\}
$$

It is not difficult to see that (S, d) is a generalized complete metric space.
We now consider the mapping $J: S \rightarrow S$, which is defined by

$$
J g(x):=-\frac{g(4 x)}{64}+\frac{18 g(2 x)}{64}+\frac{2 g(-2 x)}{64}
$$

for all $x \in V$. We will show that the equality

$$
\begin{equation*}
J^{n} g(x)=\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{64^{n}} g_{o}\left(2^{2 n-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} g_{e}\left(2^{2 n-i} x\right) \tag{6}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$ and $x \in V$. Clearly, the equality (6) holds for $n=1$. We assume that the equality (6) holds for some $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
& J^{n+1} g(x) \\
& =J^{n} J g(x) \\
& =\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{64^{n}} J g_{o}\left(2^{2 n-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} J g_{e}\left(2^{2 n-i} x\right) \\
& =\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{16^{n}} \frac{-1}{64} g_{o}\left(2^{2 n+2-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{16^{n}} \frac{18}{64} g_{o}\left(2^{2 n+1-i} x\right) \\
& +\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{16^{n}} \frac{2}{64} g_{o}\left(-2^{2 n+1-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} \frac{-1}{64} g_{e}\left(2^{2 n+2-i} x\right) \\
& +\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} \frac{18}{64} g_{e}\left(2^{2 n+1-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} \frac{2}{64} g_{e}\left(-2^{2 n+1-i} x\right) \\
& =\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n+1-i} 16^{i}}{64^{n+1}} g_{o}\left(2^{2 n+2-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i+1}}{64^{n+1}} g_{o}\left(2^{2 n+1-i} x\right) \\
& +\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n+1-i} 20^{i}}{64^{n+1}} g_{e}\left(2^{2 n+2-i} x\right)+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i+1}}{64^{n+1}} g_{e}\left(2^{2 n+1-i} x\right) \\
& =\sum_{i=0}^{n+1}{ }_{n+1} C_{i} \frac{(-1)^{n+1-i} 16^{i}}{64^{n+1}} g_{o}\left(2^{2 n+2-i} x\right)+\sum_{i=0}^{n+1}{ }_{n+1} C_{i} \frac{(-1)^{n+1-i} 20^{i}}{64^{n+1}} g_{e}\left(2^{2 n+2-i} x\right)
\end{aligned}
$$

holds for $n+1$. By mathematical induction, the equality (6) holds for all natural numbers.

Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| \leq & \frac{1}{64}\|g(4 x)-h(4 x)\| \\
& +\frac{18}{64}\|g(2 x)-h(2 x)\|+\frac{2}{64}\|g(-2 x)-h(-2 x)\| \\
\leq & K\left(\frac{1}{64} \Phi(4 x)+\frac{20}{64} \Phi(2 x)\right) \\
\leq & K\left(\frac{4(\sqrt{41}-5)^{2}}{64} L^{2} \Phi(x)+\frac{40(\sqrt{41}-5)}{64} L \Phi(x)\right) \\
\leq & L K \Phi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.

Moreover, by (2), we see that

$$
\begin{aligned}
\|f(x)-J f(x)\| & =\frac{\|D f(2 x, x)+4 D f(x, x)-2 D f(0, x)\|}{64} \\
& \leq \frac{\varphi(2 x, x)+4 \varphi(x, x)+2 \varphi(0, x)}{64} \\
& \leq \frac{1}{64} \Phi(x)
\end{aligned}
$$

for all $x \in V$. It means that $d(f, J f) \leq \frac{1}{64}$ by the definition of d. Therefore, according to Theorem 2.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S: d(f, g)<\infty\}$, which is represented by (5) for all $x \in V$.

Notice that

$$
d(f, F) \leq \frac{1}{1-L} d(f, J f) \leq \frac{1}{64(1-L)}
$$

which implies (4).
By the definition of F, together with (2) and (3), we have

$$
\begin{aligned}
& \|D F(x, y)\| \\
& \begin{aligned}
= & \lim _{n \rightarrow \infty}\left\|D J^{n} f(x, y)\right\| \\
= & \lim _{n \rightarrow \infty} \|
\end{aligned} \sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 16^{i}}{64^{n}} D f_{o}\left(2^{2 n-i} x, 2^{2 n-i} y\right) \\
& \\
& \quad+\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 20^{i}}{64^{n}} D f_{e}\left(2^{2 n-i} x, 2^{2 n-i} y\right) \| \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} \frac{20^{i}}{64^{n}}\left(\varphi\left(2^{2 n-i} x, 2^{2 n-i} y\right)+\varphi\left(-2^{2 n-i} x,-2^{2 n-i} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} \frac{20^{i}[2(\sqrt{41}-5)]^{n-i}}{64^{n}} L^{n-i}\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} \frac{(\sqrt{41}-5)^{n-i} 10^{i}}{32^{n}}\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{(\sqrt{41}+5)^{n}}{32^{n}}\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{(\sqrt{41}+5)^{n}(\sqrt{41}-5)^{n}}{16^{n}} L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
& \leq \lim _{n \rightarrow \infty} L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
& =0
\end{aligned}
$$

for all $x, y \in V$, i.e., F is a solution of the functional equation (1). Notice that if F is a solution of the functional equation (1), then the equality

$$
F(x)-J F(x)=\frac{D F(2 x, x)+4 D F(x, x)-2 D F(0, x)}{64}
$$

implies that F is a fixed point of J.
Theorem 2.6. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality (2) holds for all $x, y \in V$ and $f(0)=0$. If there exists a constant $0<L<1$ such that φ satisfies the condition

$$
\begin{equation*}
L \varphi(2 x, 2 y) \geq 24 \varphi(x, y) \tag{7}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution $F: V \rightarrow Y$ of (1) satisfying the inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{L^{2} \Phi(x)}{24^{2}(1-L)} \tag{8}
\end{equation*}
$$

for all $x \in V$. In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left[20^{i}(-96)^{n-i} f_{o}\left(\frac{x}{2^{2 n-i}}\right)+20^{i}(-64)^{n-i} f_{e}\left(\frac{x}{2^{2 n-i}}\right)\right] \tag{9}
\end{equation*}
$$

for all $x \in V$.
Proof. Let us define the set (S, d) as in the proof of Theorem 2.5. We now consider the mapping $J: S \rightarrow S$ defined by

$$
J g(x):=20 g\left(\frac{x}{2}\right)-80 g\left(\frac{x}{4}\right)+16 g\left(\frac{-x}{4}\right)
$$

for all $x \in V$. Notice that the equality

$$
J^{n} g(x)=\sum_{i=0}^{n}{ }_{n} C_{i} 20^{i}(-96)^{n-i} g_{o}\left(\frac{x}{2^{2 n-i}}\right)+\sum_{i=0}^{n}{ }_{n} C_{i} 20^{i}(-64)^{n-i} g_{e}\left(\frac{x}{2^{2 n-i}}\right)
$$

holds for all $n \in \mathbb{N}$ and $x \in V$.
Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| \leq & 20\left\|g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)\right\| \\
& +80\left\|g\left(\frac{x}{4}\right)-h\left(\frac{x}{4}\right)\right\|+16\left\|g\left(\frac{-x}{4}\right)-h\left(\frac{-x}{4}\right)\right\| \\
\leq & 96 K \Phi\left(\frac{x}{4}\right)+20 K \Phi\left(\frac{x}{2}\right) \\
\leq & L^{2} \frac{96}{24^{2}} K \Phi(x)+\frac{20}{24} \operatorname{LK\Phi }(x) \\
\leq & L K \Phi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.

Moreover, by (2), we see that

$$
\begin{aligned}
\|f(x)-J f(x)\| & =\left\|D f\left(\frac{x}{2}, \frac{x}{4}\right)+4 D f\left(\frac{x}{4}, \frac{x}{4}\right)\right\| \\
& \leq \varphi\left(\frac{x}{2}, \frac{x}{4}\right)+4 \varphi\left(\frac{x}{4}, \frac{x}{4}\right) \\
& \leq \frac{L^{2}}{24^{2}}(\varphi(2 x, x)+4 \varphi(x, x)) \\
& \leq \frac{L^{2}}{24^{2}} \Phi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(f, J f) \leq \frac{L^{2}}{24^{2}}<\infty
$$

by the definition of d.
Therefore, according to Theorem 2.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S: d(f, g)<\infty\}$, which is represented by (9) for all $x \in V$. Notice that

$$
d(f, F) \leq \frac{1}{1-L} d(f, J f) \leq \frac{L^{2}}{24^{2}(1-L)}
$$

which implies the validity of (8).

By the definition of F, together with (2) and (7), we have

$$
\begin{aligned}
\|D F(x, y)\|= & \lim _{n \rightarrow \infty}\left\|D J^{n} f(x, y)\right\| \\
= & \lim _{n \rightarrow \infty} \| \sum_{i=0}^{n}{ }_{n} C_{i}(-96)^{n-i} 20^{i} f_{o}\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right) \\
& +\sum_{i=0}^{n}{ }_{n} C_{i}(-64)^{n-i} 20^{i} f_{e}\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right) \| \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{{ }_{n} C_{i}}{2}\left(96^{n-i} 20^{i}+64^{n-i} 20^{i}\right) \times \\
& \times\left(\varphi\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right)+\varphi\left(\frac{-x}{2^{2 n-i}}, \frac{-y}{2^{2 n-i}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} 96^{n-i} 20^{i}\left(\varphi\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right)+\varphi\left(\frac{-x}{2^{2 n-i}}, \frac{-y}{2^{2 n-i}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} 96^{n-i} 20^{i} \frac{L^{n-i}}{24^{n-i}}\left(\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+\varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} 20^{i} 4^{n-i}\left(\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+\varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} 24^{n}\left(\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+\varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} 24^{n} \frac{L^{n}}{24^{n}}(\varphi(x, y)+\varphi(-x,-y)) \\
\leq & \lim _{n \rightarrow \infty} L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
= & 0
\end{aligned}
$$

for all $x, y \in V$, i.e., F is a solution of the functional equation (1). Notice that if F is a solution of the functional equation (1), then the equality

$$
F(x)-J F(x)=D F\left(\frac{x}{2}, \frac{x}{4}\right)+4 D F\left(\frac{x}{4}, \frac{x}{4}\right)
$$

implies that F is a fixed point of J.

References

[1] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
[2] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-FranzensUniversitäet, Graz, Graz, Austria 346 (2004), 43-52.
[3] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
[4] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] M. E. Gordji, S. Kaboli, and S. Zolfaghari, Stability of a mixed type quadratic, cubic and quartic functional equation, arXiv preprint arXiv:0812.2939 (2008).
[6] M. E. Gordji, H. Khodaei, and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull., Series A, 72 Iss. 3, (2010) 69-84.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] Y.-H. Lee, Hyers-Ulam-Rassias stability of a quadratic-additive type functional equation on a restricted domain, Int. J. Math. Anal. (Ruse) 7 (2013), 2745-2752.
[9] Y.-H. Lee, Stability of a monomial functional equation on a restricted domain, Mathematics 5(4) (2017), 53.
[10] Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a general quartic functional equation, East Asian Math. J. 35 (2019), 351-356.
[11] Y.-H. Lee, On the stability of a general quadratic-cubic functional equation in nonarchimedean normed spaces, East Asian Math. J. 35 (2019), 331-340.
[12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[13] I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca 1979 (in Romanian).
[14] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
Yang-Hi Lee
Department of Mathematics Education, Gongju National University of Education, Gonguu 32553, Republic of Korea

E-mail address: yanghi2@hanmail.net

[^0]: Received July 11, 2019; Accepted September 20, 2019.
 2010 Mathematics Subject Classification. 39B82, 39B52.
 Key words and phrases. stability; quadratic-cubic-quartic mapping; quadratic-cubicquartic functional equation.

