• Title/Summary/Keyword: Silicon-on-silicide

Search Result 114, Processing Time 0.024 seconds

Influences of Trap States at Metal/Semiconductor Interface on Metallic Source/Drain Schottky-Barrier MOSFET

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • The electrical properties of metallic junction diodes and metallic source/drain (S/D) Schottky barrier metal-oxide-semiconductor field-effect transistor (SB-MOSFET) were simulated. By using the abrupt metallic junction at the S/D region, the short-channel effects in nano-scaled MOSFET devices can be effectively suppressed. Particularly, the effects of trap states at the metal-silicide/silicon interface of S/D junction were simulated by taking into account the tail distributions and the Gaussian distributions at the silicon band edge and at the silicon midgap, respectively. As a result of device simulation, the reduction of interfacial trap states with Gaussian distribution is more important than that of interfacial trap states with tail distribution for improving the metallic junction diodes and SB-MOSFET. It is that a forming gas annealing after silicide formation significantly improved the electrical properties of metallic junction devices.

Thermal stability improvement of nickel germane-silicide with Ni/Co/Ni on silicon-germanium (Ni/Co/Ni를 적용한 Ni germane-silicide의 열 안정성 개선)

  • 황빈봉;지희환;오순영;배미숙;윤장근;김용구;박영호;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1069-1072
    • /
    • 2003
  • Germane-sillicide phase formation on S $i_{0.25}$G $e_{0.75}$ with Ni 100$\square$, Co 10$\square$/Ni 100$\square$ and Ni 50$\square$/Co 10$\square$/Ni 50$\square$ layer was studied by sheet resistance and Field Emission Scanning Electron Microscopy(FESEM). Thermal stability of nickel germane-silicide is found to be improved by sputtering Ni/Co/Ni on the SiGe. After annealing at 600, 650, $700^{\circ}C$, 30min., the nickel germane-silicide formed by Ni 50$\square$/Co 10$\square$/Ni 50$\square$ layer achieved a sheet resistance less than 17ohms/sq.(almost the same to the value before furnace annealing for 30min.) , while the process of the other two ways result in high sheet resistance and even sheet resistance fail due to Ge segregation.ion.

  • PDF

Studies on the Electrical Resistance and the Behaviors of Excess Silicon of Tungsten Silicide during Oxidation (텅스텐 실리사이드의 산화에 따른 전기저항 및 과잉실리콘의 거동에 관한 연구)

  • 남유원;이종무;임호빈;이종길
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.645-651
    • /
    • 1990
  • Effects of excess Si on the properities of the oxide of CVD tungsten silicide were investigated by comparing the characteristics of the two kinds of thermal oxide for CVD-WSi2.7 and WSi3.1 films on the polycrystalline Si film each other. It is reveraled from AES analysis that Si in the surface region of the silicide film is consumed to make composition and resistivity of the silicide film very nonuniform for the case of the oxidation of WSi3.1, while the underlayer polycrystalline Si was consumed for the case of the oxidation of WSi2.7.

  • PDF

Dependence on Dopant of Ni-silicide for Nano CMOS Device (Nano CMOS소자를 위한 Ni-silicide의 Dopant 의존성 분석)

  • 배미숙;지희환;이헌진;오순영;윤장근;황빈봉;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, the dependence of silicide properties such as sheet resistance and cross-sectional profile on the dopants for source/drain and gate has been characterized. There was little difference of sheet resistance among the dopants such as As, P, BF$_2$ and B$_{11}$ just a(ter formation of NiSi using RTP (Rapid Thermal Process). However, the silicide properties showed strong dependence on the dopants when thermal treatment was applied after silicidation. BF$_2$ implanted silicon showed the most stable property, while As implanted one showed the worst. The main reason of the excellent property of BF$_2$ sample is believed to be tile retardation of hi diffusion by the flourine. Therefore, retardation of Ni diffusion is highly desirable for high performance Ni-silicide technology.y.

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature (폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF

Property of Composite Titanium Silicides on Amorphous and Crystalline Silicon Substrates (아몰퍼스실리콘의 결정화에 따른 복합티타늄실리사이드의 물성변화)

  • Song Oh-Sung;Kim Sang-Yeob
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.1-5
    • /
    • 2006
  • We prepared 80 nm-thick TiSix on each 70 nm-thick amorphous silicon and polysilicon substrate using an RF sputtering with $TiSi_2$ target. TiSix composite silicide layers were stabilized by rapid thermal annealing(RTA) of $800^{\circ}C$ for 20 seconds. Line width of $0.5{\mu}m$ patterns were embodied by photolithography and dry etching process, then each additional annealing process at $750^{\circ}C\;and\;850^{\circ}C$ for 3 hours was executed. We investigated the change of sheet resistance with a four-point probe, and cross sectional microstructure with a field emission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM), respectively. We observe an abrupt change of resistivity and voids at the silicide surface due to interdiffusion of silicide and composite titanium silicide in the amorphous substrates with additional $850^{\circ}C$ annealing. Our result implies that the electrical resistance of composite titanium silicide may be tunned by employing appropriate substrates and annealing condition.

  • PDF

Study of Thermal Stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, thermal stability of Nickel silicide formed on p-type silicon wafer using Ni-V alloy film was studied. As compared with pure Ni, Ni-V shows better thermal stability. The addition of Vanadium suppresses the phase transition of NiSi to $NiSi_2$ effectively. Ni-V single structure shows the best thermal stability compared with the other Ni-silicide using TiN and Co/TiN capping layers. To enhance the thermal stability up to $650^{\circ}C$ and find out the optimal thickness of Ni silicide, different thickness of Ni-V was also investigated in this work.

Microstructure Evaluation of Nano-thick Au-inserted Nickel Silicides (나노급 Au층 삽입 니켈실리사이드의 미세구조 변화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Thermally evaporated 10 nm-Ni/1 nm-Au/(30 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Au-inserted nickel silicide. The silicide samples underwent rapid thermal annealing at $300{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance was measured using a four-point probe. A scanning electron microscope and a transmission electron microscope were used to determine the cross-sectional structure and surface image. High-resolution X-ray diffraction and a scanning probe microscope were employed for the phase and surface roughness. According to sheet resistance and XRD analyses, nickel silicide with Au had no effect on widening the NiSi stabilization temperature region. Au-inserted nickel silicide on a single crystal silicon substrate showed nano-dots due to the preferred growth and a self-arranged agglomerate nano phase due to agglomeration. It was possible to tune the characteristic size of the agglomerate phase with silicidation temperatures. The nano-thick Au-insertion was shown to lead to self-arranged microstructures of nickel silicide.