DOI QR코드

DOI QR Code

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature

폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화

  • Kim, Sang-Yeob (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul)
  • 김상엽 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2006.09.27

Abstract

Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.

Keywords

References

  1. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er and S. Redkar, Appl. Phys. Lett., 78(20), 3091 (2001) https://doi.org/10.1063/1.1372621
  2. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  3. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender and S, Zhu, J. Appl. Phys, 88(1), 133 ?(2000) https://doi.org/10.1063/1.373633
  4. The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
  5. S. L. Hsia, T. Y. Tan, P. Smith and G. E. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  6. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38(2), 262 (1991) https://doi.org/10.1109/16.69904
  7. R. T. Tung, MRS Symp, Proc, 427, 481 (1996) https://doi.org/10.1557/PROC-427-481
  8. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys, Lett., 58(12), 1308 (1991) https://doi.org/10.1063/1.104345
  9. S. P. Murarka, J. Electrochem. Soc., 129,293 (1982) https://doi.org/10.1149/1.2123815
  10. S. H. Jeong, 'Study on Property and Unit Process of Composi te Silicide for Nano-CMOS Devices', Unpub-?liehed master's thesis, University of Seoul, Seoul, (2005)
  11. Y. S. Jung, S. H. Cheong and O. S. Song, Korean Journal of Materials Research, 14, 389 (2004) https://doi.org/10.3740/MRSK.2004.14.6.389
  12. S. P. Murarka, J. Electrochem. Soc., 129, 293 (1982) https://doi.org/10.1149/1.2123815
  13. Beek J. A., Oberndorff P. J. T. L., Kodentsov A. A. and Loo F. J. J., 'Interactios in the Co-Ni-Si system at $800^{\circ}C$', Journal of Alloys and Comounds, 297, 137-143, (2000) https://doi.org/10.1016/S0925-8388(99)00594-0
  14. E. G. Colgan, J. P. Gambino and B. Cunningham, 'Nickel silicide thermal stability on polycrystalline and single crystalline silicon', Materials Chemistry and Physics, 46, 209-214, (1996) https://doi.org/10.1016/S0254-0584(97)80015-6