Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.1.005

Microstructure Evaluation of Nano-thick Au-inserted Nickel Silicides  

Yoon, Ki-Jeong (Department of Materials Science and Engineering, University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Materials Research / v.18, no.1, 2008 , pp. 5-11 More about this Journal
Abstract
Thermally evaporated 10 nm-Ni/1 nm-Au/(30 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Au-inserted nickel silicide. The silicide samples underwent rapid thermal annealing at $300{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance was measured using a four-point probe. A scanning electron microscope and a transmission electron microscope were used to determine the cross-sectional structure and surface image. High-resolution X-ray diffraction and a scanning probe microscope were employed for the phase and surface roughness. According to sheet resistance and XRD analyses, nickel silicide with Au had no effect on widening the NiSi stabilization temperature region. Au-inserted nickel silicide on a single crystal silicon substrate showed nano-dots due to the preferred growth and a self-arranged agglomerate nano phase due to agglomeration. It was possible to tune the characteristic size of the agglomerate phase with silicidation temperatures. The nano-thick Au-insertion was shown to lead to self-arranged microstructures of nickel silicide.
Keywords
NiSi; Au-inserted nisilicide; salicide; nano-thick; thermal stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 B. A. Julies, D. Knoesen, R. Pretorius and D. Adams, Thin Solids Films, 347, 201 (1999)   DOI   ScienceOn
2 J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S.Redkar, Appl. Phys. Lett., 78, 20 (2001)   DOI   ScienceOn
3 J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films,359, 39 (2000)   DOI   ScienceOn
4 C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K.Maex, H. Bender and S. Zhu, J. Appl. Phys., 88, 1 (2000)   DOI   ScienceOn
5 The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
6 J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 7, 144 (1997)   DOI
7 W. Huang, L. Zhang, Y. Gao and H. Jin, Microelectron. Eng., 83, 345, (2006)   DOI   ScienceOn
8 I. Doi, R. C. Teixeira, R. E. Santos, J. A. Diniz, J. W. Swart and S. G. S. Filho, Microelecrton. Eng., 82, 485 (2005)   DOI   ScienceOn
9 K. J. Yoon and O. S. Song, Kor. J. Mater. Res., 16, 9 (2006)   DOI
10 Y. S. Jung, S. H. Cheong and O. S. Song, Kor. J. Mater.Res., 14, 389 (2004)   과학기술학회마을   DOI
11 D. B. Williams and C. B. Carter, Transmission Electron Microscopy Basics I, 1st ed., P.152-170, Plenum Press, NewYork, U.S.A. (1996)
12 C. Lavoie, F. M. d`Heurle, C. Detavernier and C. C. Jr., Microelectron. Eng., 70, 144 (2003)   DOI   ScienceOn
13 J. J. Sun, J. Y. Tsai and C. M. Osburn, IEEE Trans.Electron Devices, 45, 1946 (1998)   DOI   ScienceOn
14 E. G. Colgan, J. P. Gambino and Q. Z. Hong, Mater. Sci.Eng., 16, 43 (1996)   DOI   ScienceOn
15 H. Fang, M. C. Ozturk, E. G. Seebauer and D. E.Batchelor, J. Electrochem. Soc., 146, 4240 (1999)   DOI
16 J. Lutze, G. Scott and M. Manley, IEEE Electron DeviceLett., 21, 155 (2000)   DOI   ScienceOn
17 J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262 (1991)   DOI   ScienceOn
18 J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J.H. Dal, A.Veloso, K. J. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. Potter, C. Vrancken and K. Maex, Microelectron. Eng., 82, 441 (2005)   DOI   ScienceOn