• Title/Summary/Keyword: SOI MOSFET

Search Result 116, Processing Time 0.023 seconds

Drain Current Response Delay High Frequency Model of SOI MOSFET with Inductive Parasitic Elements (유도성 기생성분에 의한 드레인전류 응답지연을 포함한 SOI MOSFET 고주파모델)

  • Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.959-964
    • /
    • 2018
  • In this paper, it was firstly confirmed that the drain current of the depleted SOI MOSFET operated in the high frequency response delay occurs by the inductive parasitic. Depleted SOI MOSFET cannot be applied as a conventional high-frequency MOSFET model because the response delay of the drain current is generated in accordance with the drain voltage fluctuation. This response delay may be described as a non-quasi-static effect, and the SOI MOSFET generated the response delay by the inductive parasitics compared to typical MOSFET. It is confirmed that depleted SOI MOSFET's RF characteristics can be well reproduced with the proposed method including the drain current response delay.

Reduction of short channel Effects in Ground Plane SOI MOSFET′s (Growld Plane SOI MOSFET의 단채널 현상 개선)

  • ;;;;Jean-Pierre Colinge
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.9-14
    • /
    • 2004
  • This paper reports the measurement and analysis of the short channel effects and the punchthrough voltage of SOI-MOSFET with a self-aligned ground plane electrode in the silicon mechanical substrate underneath the buried oxide. When the channel length is reduced below 0.2${\mu}{\textrm}{m}$ it is observed that the threshold voltage roll-off and the subthreshold swing with channel length are reduced and DIBL is improved more significantly in GP-SOI devices than FD-SOI devices. It is also observed from the dependence of threshold voltage with substrate biases that the body factor is a higher in GP-SOI devices than FD-SOI devices. From the measurement results of punchthrough voltage, GP-SOI devices show the higher punchthrough voltages than FD-SOI devices

A 5GHz-Band Low Noise Amplifier Using Depletion-type SOI MOSFET (공핍형 SOI MOSFET를 이용한 5GHz대역 저잡음증폭기)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2045-2051
    • /
    • 2009
  • A 5-GHz band Low Noise Amplifier(LNA) using SOI MOSFET is designed. To improve the noise performance, depletion-type SOI MOSFET is adopted, and it is designed by the two-stage topology consisting of common-source and common-gate stages for low-voltage operation. The fabricated LNA achieved an S11 of less than -10dB, voltage gain of 21dB with a power consumption of 8.3mW at 5.5GHz, and a noise figure of 1.7dB indicated that the depletion-type LNA improved the noise figure by 0.3dB compared with conventional type. These results show the feasibility of a CMOS LNA employing depletion-type SOI MOSFET for low-noise application.

Electrical Characterization of Nano SOI Wafer by Pseudo MOSFET (Pseudo MOSFET을 이용한 Nano SOI 웨이퍼의 전기적 특성분석)

  • Bae, Young-Ho;Kim, Byoung-Gil;Kwon, Kyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1075-1079
    • /
    • 2005
  • The Pseudo MOSFET measurements technique has been used for the electrical characterization of the nano SOI wafer. Silicon islands for the Pseudo MOSFET measurements were fabricated by selective etching of surface silicon film with dry or wet etching to examine the effects of the etching process on the device properties. The characteristics of the Pseudo MOSFET were not changed greatly in the case of thick SOI film which was 205 nm. However the characteristics of the device were dependent on etching process in the case of less than 100 nm thick SOI film. The sub 100 nm SOI was obtained by thinning the silicon film of standard thick SOI wafer. The thickness of SOI film was varied from 88 nm to 44 nm by chemical etching. The etching process effects on the properties of pseudo MOSFET characteristics, such as mobility, turn-on voltage, and drain current transient. The etching Process dependency is greater in the thinner SOI wafer.

Current-Voltage Characteristics of Schottky Barrier SOI nMOS and pMOS at Elevated Temperature (고온에서 Schottky Barier SOI nMOS 및 pMOS의 전류-전압 특성)

  • Ka, Dae-Hyun;Cho, Won-Ju;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • In this work, Er-silicided SB-SOI nMOSFET and Pt-silicided SB-SOI pMOSFET have been fabricated to investigate the current-voltage characteristics of Schottky barrier SOI nMOS and pMOS at elevated temperature. The dominant current transport mechanism of SB nMOS and pMOS is discussed using the measurement results of the temperature dependence of drain current with gate voltages. It is observed that the drain current increases with the increase of operating temperature at low gate voltage due to the increase of thermal emission and tunneling current. But the drain current is decreased at high gate voltage due to the decrease of the drift current. It is observed that the ON/Off current ratio is decreased due to the increased tunneling current from the drain to channel region although the ON current is increased at elevated temperature. The threshold voltage variation with temperature is smaller and the subthreshold swing is larger in SB-SOI nMOS and pMOS than in SOI devices or in bulk MOSFETs.

Dependence of Electrical Characteristics on Back Bias in SOI Device (SOI(Silicon-on-Insulator) 소자에서 후면 Bias에 대한 전기적 특성의 의존성)

  • 강재경;박재홍;김철주
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.43-44
    • /
    • 1993
  • In this study SOI MOSFET model of the structure with 4-terminals and 3-interfaces is proposed. An SOI MOSFET is modeled with the equivalent circuit considered the interface capacitances. Parameters of SOI MOSFET device are extracted, and the electrical characteristics due to back-bias change is simulated. In SOI-MOSFET model device we describe the characteristics of threshold voltage, subthreshold slope, maxium electrical field and drain currents in the front channel when the back channel condition move into accmulation, depletion, and inversion regions respectively.

  • PDF

A Study on Partially-Depleted SOI MOSFET with Multi-gate (다중 게이트을 이용한 부분 공핍형 SOI MOSFET 특성에 관한 연구)

  • Shin, K.S.;Park, Y.K.;Lee, S.J.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1286-1288
    • /
    • 1997
  • In this study, partially-depleted SOI MOSFET with multi-gate was fabricated on p-type SIMOX(Seperation by Implanted Oxygen). As increase the number of its gate, increase the breakdown voltage. But kink effect was not affected by the number of its gate. However, it is known that the asymmetric gate structure reduce kink effect. So if asymmetric multi-gate applied to partially-depleted SOI MOSFET, it is expected that the breakdown voltage of SOI MOSET with asymmetric multi-gate is higher than that of SOI MOSFET with single gate and that kink effect is reduced by SOI MOSFET with asymmetric multi-gate.

  • PDF

Electrical Characterization of Strained Silicon On Insulator with Pseudo MOSFET (Pseudo MOSFET을 이용한 Strained Silicon On Insulator의 전기적 특성분석)

  • Bae, Young-Ho;Yuk, Hyung-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.21-21
    • /
    • 2007
  • Strained silicon 기술은 MOSFET 채널 내 캐리어 이동도를 향상시켜 집적회로의 성능을 향상시키는 기술이다. 최근에는 strained 실리콘 기술과 SOI(silicon On Insulator) 기술을 접목시켜 집적회로 소자의 특성을 더욱 향상시킨 SSOI(Strained Silicon On Insulator) 기술이 연구되고 있다. 본 연구에서는 pseudo MOSFET 측정법을 이용하여 strained SOI 웨이퍼의 전기적 특성 분석을 행하였다. pseudo MOSFET 측정법은 SOI 웨이퍼의 전기적 특성분석을 위해 고안된 방법으로써 산화, 도핑 등의 소자 제조 공정 없이도 SOI 표면 실리콘층의 이동도와 매몰산화막과의 계면 특성 등을 분석해 낼 수 있는 기술이다. 표면 실리콘층의 두께와 매몰산화막의 두께가 각각 60nm, 150nm인 SOI 웨이퍼와 동일한 막 두께를 가지며 표면 실리콘층이 strained silicon인 SSOI 웨이퍼를 제작하여 그 특성을 비교 분석하였다. Pseudo MOSFET 측정 결과 Strained SOI 웨이퍼에서 표면 실리콘총 내의 전자 이동도가 일반적인 SOI 웨이퍼보다 약 25% 향상되었으며 정공 이동도나 매몰산화막의 계면 트랩밀도는 큰 차이를 보이지 않았다.

  • PDF

Design of SOI CMOS image sensors using a nano-wire MOSFET-structure photodetector (나노 와이어 MOSFET 구조의 광검출기를 가지는 SOI CMOS 이미지 센서의 픽셀 설계)

  • Do, Mi-Young;Shin, Young-Shik;Lee, Sung-Ho;Park, Jae-Hyoun;Seo, Sang-Ho;Shin, Jang-Kyoo;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.387-394
    • /
    • 2005
  • In order to design SOI CMOS image sensors, SOI MOSFET model parameters were extracted using the equation of bulk MOSFET model parameters and were optimized using SPICE level 2. Simulated I-V characteristics of the SOI NMOSFET using the extracted model parameters were compared to the experimental I-V characteristics of the fabricated SOI NMOSFET. The simulation results agreed well with experimental results. A unit pixel for SOI CMOS image sensors was designed and was simulated for the PPS, APS, and logarithmic circuit using the extracted model parameters. In these CMOS image sensors, a nano-wire MOSFET photodetector was used. The output voltage levels of the PPS and APS are well-defined as the photocurrent varied. It is confirmed that SOI CMOS image sensors are faster than bulk CMOS image sensors.

Evaluation of nano-sSOI wafer using pseudo-MOSFET (Pseudo-MOSFET을 이용한 nano-sSOI 기판의 특성 평가)

  • Jung, Myung-Ho;Kim, Kwan-Su;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.11-12
    • /
    • 2007
  • The electrical characteristics of strained-SOI wafer were evaluated by using pseudo-MOSFET. The electrical characteristics of sSOI pseudo-MOSFET were superior to conventional SOI device. Moreover, the electrical characteristics were enhanced by forming gas anneal due to reduction of back interface trap density between substrate and buried oxide.

  • PDF