• Title/Summary/Keyword: SOC testing

Search Result 25, Processing Time 0.02 seconds

An Efficient Wrapper Design for SOC Testing (SOC 테스트를 위한 Wrapper 설계 기법)

  • Choi, Sun-Hwa;Kim, Moon-Joon;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • The SOC(System on Chip) testing has required the core re-use methodology and the efficiency of test method because of increase of its cost. The goal of SOC testing is to minimize the testing time, area overhead, and power consumption during testing. Prior research has concentrated on only one aspect of the test core wrapper design problem at a test time. Our research is concentrated on optimization of test time and area overhead for the core test wrapper, which is one of the important elements for SOC test architecture. In this paper, we propose an efficient wrapper design algorithm that improves on earlier approaches by also reducing the TAM(Test Access Mechanism) width required to achieve these lower testing times.

An Efficient Design Strategy of Core Test Wrapper For SOC Testing (SOC 테스트를 위한 효율적인 코어 테스트 Wrapper 설계 기법)

  • Kim, Moon-Joon;Chang, Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.160-169
    • /
    • 2004
  • With an emergence of SOC from developed IC technology, the VLSI design has required the core re-use technique and modular test development. To minimize the cost of testing SOC, an efficient method is required to optimize the test time and area overhead in conjunction for the core test wrapper, which is one of the important elements for SOC test architecture. In this paper, we propose an efficient design strategy of core test wrapper to achieve the minimum cost for SOC testing. The proposed strategy adopted advantages of traditional methods and more developed to be successfully used in practice.

Efficient Test Data Compression and Low Power Scan Testing for System-On-a-Chip(SOC) (SOC(System-On-a-Chip)에 있어서 효율적인 테스트 데이터 압축 및 저전력 스캔 테스트)

  • Park Byoung-Soo;Jung Jun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.229-236
    • /
    • 2005
  • Testing time and power consumption during testing System-On-a-Chip (SOC) are becoming increasingly important as the IP core increases in a SOC. We present a new algorithm to reduce the scan-in power and test data volume using the modified scan latch reordering. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power and high compression. Experimental results for ISCAS 89 benchmark circuits show that reduced test data and low power scan testing can be achieved in all cases.

  • PDF

A Study of Core Test Scheduling for SOC (코아 테스트 스케듈링에 관한 연구)

  • 최동춘;민형복;김인수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.208-210
    • /
    • 2003
  • 본 논문은 SOC 내에 존재하는 코아들을 테스트하는 과정에서 개별 코아들의 테스트 조건을 기반으로 한 스케듈링을 통해 최적의 Test ing time을 구하는 연구이다. SOC 내에 존재하는 코아들은 주어지는 TAM(Test Access Mechanism) Width에 따라 각코아들의 Width가 달라지고, 최대 Width에서 최소 Width(1)까지 각 Width 별로 Testing time을 계산할 수 있다. 코아들의 각 Width 별 Testing time을 기존의 Rectangle Packing Algorithm을 수정, 보완하여 효율적으로 구성한 수정 Rectangle Packing Algorithm에 적응하여 최적의 Testing time을 구하는 것이 본 논문의 목적이다.

  • PDF

Low Cost SOC(System-On-a-Chip) Testing Method for Reduction of Test Data and Power Dissipation (테스트 데이터와 전력소비 단축을 위한 저비용 SOC 테스트 기법)

  • Hur Yongmin;Lin Chi-ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes an efficient scan testing method for compression of test input data and reduction of test power for SOC. The proposed method determines whether some parts of a test response can be reused as a part of next input test data on the analysis of deterministic test data and its response. Our experimental results show that benchmark circuits have a high similarity between un-compacted deterministic input test data and its response. The proposed testing method achieves the average of 29.4% reduction of power dissipation based on the number of test clock and 69.7% reduction of test data for ISCAS'89 benchmark circuits.

Low Power Scan Testing and Test Data Compression for System-On-a-Chip (System-On-a-Chip(SOC)에 대한 효율적인 테스트 데이터 압축 및 저전력 스캔 테스트)

  • 정준모;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1045-1054
    • /
    • 2002
  • We present a new low power scan testing and test data compression mothod lot System-On-a-Chip (SOC). The don't cares in unspecified scan vectors are mapped to binary values for low Power and encoded by adaptive encoding method for higher compression. Also, the scan-in direction of scan vectors is determined for low power. Experimental results for full - scanned versions of ISCAS 89 benchmark circuits show that the proposed method has both low power and higher compression.

SOC Test Compression Scheme Sharing Free Variables in Embedded Deterministic Test Environment

  • Wang, Weizheng;Cai, Shuo;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.397-403
    • /
    • 2015
  • This paper presents a new SOC test compression scheme in Embedded Deterministic Test (EDT) compression environment. Compressed test data is brought over the TAM from the tester to the cores in SOC and decompressed in the cores. The proposed scheme allows cores tested at the same time to share some test channels. By sharing free variables in these channels across test cubes of different cores decompressed at the same time, high encoding efficiency is achieved. Moreover, no excess control data is required in this scheme. The ability to reuse excess free variables eliminates the need for high precision in matching the number of test channels with the number of care bits for every core. Experimental results obtained for some SOC designs illustrate effectiveness of the proposed test application scheme.

An Efficient SoC Test Architecture for Testing Various Cores in Parallel (다양한 코어의 병렬 테스트를 지원하는 효과적인 SOC 테스트 구조)

  • Kim, Hyun-Sik;Kim, Yong-Joon;Park, Hyun-Tae;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.140-150
    • /
    • 2006
  • In this paper, we present a new hardware architecture for testing various cores embedded in SoC. The conventional solutions need much testing time since only one core is tested at single test period. To enhance this, S-TAM, a novel test architecture, and its controller which enable parallel testing of various cores are proposed. S-TAM supports bus sharing to broadcast testing and cores to be tested are selected by using it. In addition, S-TAM controller enables the effective SoC test by simultaneous controlling the various test cores which are based on the different test architectures like IEEE 1149.1 and IEEE 1500.

An Efficient Partial Isolation Ring Technique for SOC Testing (SOC 테스팅을 위한 효율적인 부분 분리 링)

  • Kim, Moon-Joon;Lee, Young-Gyun;Kim, Seok-Yoon;Chang, Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.541-547
    • /
    • 2001
  • Testing a core-based designed chip requires a full isolation ring to provide fro core test data access to each core. A partial isolation ring replaces the full isolation ring reducing total isolation ring size surrounding. This paper proposes an efficient method to reduce the size of the partial isolation ring and shorten the time to acquire the final solution. For this, a reasonable ordering technique according to testability is introduced and a sorting technique is adopted to reduce the total solution time. Experimental results show that the proposed method can be useful in practice.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.