• Title/Summary/Keyword: SFDR

Search Result 101, Processing Time 0.025 seconds

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

A 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS Algorithmic A/D Converter (14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS 알고리즈믹 A/D 변환기)

  • Park, Yong-Hyun;Lee, Kyung-Hoon;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.65-73
    • /
    • 2006
  • This work presents a 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS algorithmic A/D converter (ADC) for intelligent sensors control systems, battery-powered system applications simultaneously requiring high resolution, low power, and small area. The proposed algorithmic ADC not using a conventional sample-and-hold amplifier employs efficient switched-bias power-reduction techniques in analog circuits, a clock selective sampling-capacitor switching in the multiplying D/A converter, and ultra low-power on-chip current and voltage references to optimize sampling rate, resolution, power consumption, and chip area. The prototype ADC implemented in a 0.18um 1P6M CMOS process shows a measured DNL and INL of maximum 0.98LSB and 15.72LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 54dB and 69dB, respectively, and a power consumption of 1.2mW at 200KS/s and 1.8V. The occupied active die area is $0.87mm^2$.

A 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC Based on Low-Power Composite Switching (저전력 복합 스위칭 기반의 0.16㎟ 12b 30MS/s 0.18um CMOS SAR ADC)

  • Shin, Hee-Wook;Jeong, Jong-Min;An, Tai-Ji;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.27-38
    • /
    • 2016
  • This work proposes a 12b 30MS/s 0.18um CMOS SAR ADC based on low-power composite switching with an active die area of $0.16mm^2$. The proposed composite switching employs the conventional $V_{CM}$-based switching and monotonic switching sequences while minimizing the switching power consumption of a DAC and the dynamic offset to constrain a linearity of the SAR ADC. Two equally-divided capacitors topology and the reference scaling are employed to implement the $V_{CM}$-based switching effectively and match an input signal range with a reference voltage range in the proposed C-R hybrid DAC. The techniques also simplify the overall circuits and reduce the total number of unit capacitors up to 64 in the fully differential version of the prototype 12b ADC. Meanwhile, the SAR logic block of the proposed SAR ADC employs a simple latch-type register rather than a D flip-flop-based register not only to improve the speed and stability of the SAR operation but also to reduce the area and power consumption by driving reference switches in the DAC directly without any decoder. The measured DNL and INL of the prototype ADC in a 0.18um CMOS are within 0.85LSB and 2.53LSB, respectively. The ADC shows a maximum SNDR of a 59.33dB and a maximum SFDR of 69.83dB at 30MS/s. The ADC consumes 2.25mW at a 1.8V supply voltage.

A Mismatch-Insensitive 12b 60MS/s 0.18um CMOS Flash-SAR ADC (소자 부정합에 덜 민감한 12비트 60MS/s 0.18um CMOS Flash-SAR ADC)

  • Byun, Jae-Hyeok;Kim, Won-Kang;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.17-26
    • /
    • 2016
  • This work proposes a 12b 60MS/s 0.18um CMOS Flash-SAR ADC for various systems such as wireless communications and portable video processing systems. The proposed Flash-SAR ADC alleviates the weakness of a conventional SAR ADC that the operation speed proportionally increases with a resolution by deciding upper 4bits first with a high-speed flash ADC before deciding lower 9bits with a low-power SAR ADC. The proposed ADC removes a sampling-time mismatch by using the C-R DAC in the SAR ADC as the combined sampling network instead of a T/H circuit which restricts a high speed operation. An interpolation technique implemented in the flash ADC halves the required number of pre-amplifiers, while a switched-bias power reduction scheme minimizes the power consumption of the flash ADC during the SAR operation. The TSPC based D-flip flop in the SAR logic for high-speed operation reduces the propagation delay by 55% and the required number of transistors by half compared to the conventional static D-flip flop. The prototype ADC in a 0.18um CMOS demonstrates a measured DNL and INL within 1.33LSB and 1.90LSB, with a maximum SNDR and SFDR of 58.27dB and 69.29dB at 60MS/s, respectively. The ADC occupies an active die area of $0.54mm^2$ and consumes 5.4mW at a 1.8V supply.

A 14b 150MS/s 140mW $2.0mm^2$ 0.13um CMOS ADC for SDR (Software Defined Radio 시스템을 위한 14비트 150MS/s 140mW $2.0mm^2$ 0.13um CMOS A/D 변환기)

  • Yoo, Pil-Seon;Kim, Cha-Dong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • This work proposes a 14b 150MS/s 0.13um CMOS ADC for SDR systems requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC employs a calibration-free four-step pipeline architecture optimizing the scaling factor for the input trans-conductance of amplifiers and the sampling capacitance in each stage to minimize thermal noise effects and power consumption at the target resolution and sampling rate. A signal- insensitive 3-D fully symmetric layout achieves a 14b level resolution by reducing a capacitor mismatch of three MDACs. The proposed supply- and temperature- insensitive current and voltage references with on-chip RC filters minimizing the effect of switching noise are implemented with off-chip C filters. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates a measured DNL and INL within 0.81LSB and 2.83LSB, at 14b, respectively. The ADC shows a maximum SNDR of 64dB and 61dB and a maximum SFDR of 71dB and 70dB at 120MS/s and 150MS/s, respectively. The ADC with an active die area of $2.0mm^2$ consumes 140mW at 150MS/s and 1.2V.

Design of Low Power 12Bit 80MHz CMOS D/A Converter using Pseudo-Segmentation Method (슈도-세그멘테이션 기법을 이용한 저 전력 12비트 80MHz CMOS D/A 변환기 설계)

  • Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Kang, Jin-Ku;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.13-20
    • /
    • 2008
  • This paper describes the design of low power 12bit Digital-to-Analog Converter(D/A Converter) using Pseudo-Segmentation method which shows the conversion rate of 80MHz and the power supply of 1.8V with 0.18um CMOS n-well 1-poly 6-metal process for advanced wireless communication system. Pseudo-segmentation method used in binary decoder consists of simple parallel buffer is employed for low power because of simpler configuration than that of thermometer decoder. Also, using deglitch circuit and swing reduced drivel reduces a switching noise. The measurement results of the proposed low power 12bit 80MHz CMOS D/A Converter shows SFDR is 66.01dBc at sampling frequency 80MHz, input frequency 1MHz and ENOB is 10.67bit. Integral nonlinearity(INL) / Differential nonlinearity(DNL) have been measured ${\pm}1.6LSB/{\pm}1.2LSB$. Glich energy is measured $49pV{\cdot}s$. Power dissipation is 46.8mW at 80MHz(Maximum sampling frequency) at a 1.8V power supply.

An 1.2V 10b 500MS/s Single-Channel Folding CMOS ADC (1.2V 10b 500MS/s 단일채널 폴딩 CMOS A/D 변환기)

  • Moon, Jun-Ho;Park, Sung-Hyun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • A 10b 500MS/s $0.13{\mu}m$ CMOS ADC is proposed for 4G wireless communication systems such as a LTE-Advanced and SDR The ADC employs a calibration-free single-channel folding architecture for low power consumption and high speed conversion rate. In order to overcome the disadvantage of high folding rate, at the fine 7b ADC, a cascaded folding-interpolating technique is proposed. Further, a folding amplifier with the folded cascode output stage is also discussed in the block of folding bus, to improve the bandwidth limitation and voltage gain by parasitic capacitances. The chip has been fabricated with $0.13{\mu}m$ 1P6M CMOS technology, the effective chip area is $1.5mm^2$. The measured results of INL and DNL are within 2.95LSB and l.24LSB at 10b resolution, respectively. The SNDR is 54.8dB and SFDR is 63.4dBc when the input frequency is 9.27MHz at sampling frequency of 500MHz. The ADC consumes 150mW($300{\mu}W/MS/s$) including peripheral circuits at 500MS/s and 1.2V(1.5V) power supply.

A 12Bit 80MHz CMOS D/A Converter with active load inverter switch driver (능동부하 스위치 구동 회로를 이용한 12비트 80MHz CMOS D/A 변환기 설계)

  • Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes a 12 bit 80MHz CMOS D/A converter for wireless transceiver. Proposed circuit in the paper employes segmented structure which consists of four stage 3bit thermometer decoders. Proposed D/A converter is manufactured 0.35um CMOS n-well digital standard process and measurement results show a ${\pm}1.36SB/{\pm}0.62LSB$ of INL/DNL and $46pV{\cdot}s$ of glitch energy. SNR and SFDR are measured to be 58.5dB and 64.97dB @ Fs=80MHz and Fin=19MHz with a total power consumption of 99mW. Such results proved that our work has low power consumption, high linearity, low glitch and improved dynamic performance. Therefore, our work can be appled to various high speed and high performance circuits.

Design of a Small Area 12-bit 300MSPS CMOS D/A Converter for Display Systems (디스플레이 시스템을 위한 소면적 12-bit 300MSPS CMOS D/A 변환기의 설계)

  • Shin, Seung-Chul;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a small area 12-bit 300MSPS CMOS Digital-to-Analog Converter(DAC) is proposed for display systems. The architecture of the DAC is based on a current steering 6+6 segmented type, which reduces non-linearity error and other secondary effects. In order to improve the linearity and glitch noise, an analog current cell using monitoring bias circuit is designed. For the purpose of reducing chip area and power dissipation, furthermore, a noble self-clocked switching logic is proposed. To verify the performance, it is fabricated with $0.13{\mu}m$ thick-gate 1-poly 6-metal N-well Samsung CMOS technology. The effective chip area is $0.26mm^2$ ($510{\mu}m{\times}510{\mu}m$) with 100mW power consumption. The measured INL (Integrated Non Linearity) and DNL (Differential Non Linearity) are within ${\pm}3LSB$ and ${\pm}1LSB$, respectively. The measured SFDR is about 70dB, when the input frequency is 15MHz at 300MHz clock frequency.