• Title/Summary/Keyword: M-OTP

Search Result 54, Processing Time 0.038 seconds

Design of a Logic eFuse OTP Memory IP (Logic eFuse OTP 메모리 IP 설계)

  • Ren, Yongxu;Ha, Pan-bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.317-326
    • /
    • 2016
  • In this paper, a logic eFuse (electrical Fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) using only logic transistors to reduce the development cost and period of OTP memory IPs is designed. To secure the reliability of other IPs than the OTP memory IP, a higher voltage of 2,4V than VDD (=1.5V) is supplied to only eFuse links of eFuse OTP memory cells directly through an external pad FSOURCE coming from test equipment in testing wafers. Also, an eFuse OTP memory cell of which power is supplied through FSOURCE and hence the program power is increased in a two-dimensional memory array of 128 rows by 8 columns being also able to make the decoding logic implemented in small area. The layout size of the designed 1kb eFuse OTP memory IP with the Dongbu HiTek's 110nm CIS process is $295.595{\mu}m{\times}455.873{\mu}m$ ($=0.134mm^2$).

Design of an eFuse OTP Memory of 8 Bits for PMICs and its Measurement (PMIC용 8비트 eFuse OTP Memory 설계 및 측정)

  • Park, Young-Bae;Choi, In-Hwa;Lee, Dong-Hoon;Jin, Liyan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.722-725
    • /
    • 2012
  • In this paper, we design an 8-bit eSuse OTP (one-time programmable) memory based on a $0.35{\mu}m$ BCD process using differential paired eFuse cells which can sense BL data without a reference voltage and also have smaller sensing resistances of programmed eFuse links. The channel widths of a program transistor of the differential eFuse OTP cell are splitted into $45{\mu}m$ and $120{\mu}m$. Also, we implement a sensing margin test circuit with variable pull-up loads in consideration of variations of the programmed eFuse resistances. It is confirmed by measurement results that the designed 8-bit eFuse OTP memory IP gives a better yield when the channel width is $120{\mu}m$.

  • PDF

Design of Low-Area 1-kb PMOS Antifuse-Type OTP IP (저면적 1-kb PMOS Antifuse-Type OTP IP 설계)

  • Lee, Cheon-Hyo;Jang, Ji-Hye;Kang, Min-Cheol;Lee, Byung-June;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1858-1864
    • /
    • 2009
  • In this paper, we design a non-volatile memory IP, 1-kb one-time programmable (OTP) memory, used for power management ICs. Since a conventional OTP cell uses an isolated NMOS transistor as an antifuse, there is an advantage of it big cell size with the BCD process. We use, therefore, a PMOS transistor as an antifuse in lieu of the isolated NMOS transistor and minimize the cell size by optimizing the size of a OTP cell transistor. And we add an ESD protection circuit to the OTP core circuit to prevent an arbitrary cell from being programmed by a high voltage between the terminals of the PMOS antifuse when the ESD test is done. Furthermore, we propose a method of turning on a PMOS pull-up transistor of high impedance to eliminate a gate coupling noise in reading a non-programmed cell. The layout size of the designed 1-kb PMOS-type antifuse OTP IP with Dongbu's $0.18{\mu}m$ BCD is $129.93{\times}452.26{\mu}m^2$.

Deign of Small-Area Dual-Port eFuse OTP Memory IP for Power ICs (PMIC용 저면적 Dual Port eFuse OTP 메모리 IP 설계)

  • Park, Heon;Lee, Seung-Hoon;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.310-318
    • /
    • 2015
  • In this paper, dual-port eFuse OTP (one-time programmable) memory cells with smaller cell sizes are used, a single VREF (reference voltage) is used in the designed eFuse OTP IP (intellectual property), and a BL (bit-line) sensing circuit using a S/A (sense amplifier) based D F/F is proposed. With this proposed sensing technique, the read current can be reduced to 3.887mA from 6.399mA. In addition, the sensing resistances of a programmed eFuse cell in the program-verify-read and read mode are also reduced to $9k{\Omega}$ and $5k{\Omega}$ due to the analog sensing. The layout size of the designed 32-bit eFuse OTP memory is $187.845{\mu}m{\times}113.180{\mu}m$ ($=0.0213{\mu}m2$), which is confirmed to be a small-area implementation.

Design of Novel OTP Unit Bit and ROM Using Standard CMOS Gate Oxide Antifuse (표준 CMOS 게이트 산화막 안티퓨즈를 이용한 새로운 OTP 단위 비트와 ROM 설계)

  • Shin, Chang-Hee;Kwon, Oh-Kyong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.9-14
    • /
    • 2009
  • In this paper, we proposed a novel OTP unit bit of CMOS gate oxide antifuse using the standard CMOS process without additional process. The proposed OTP unit bit is composed of 3 transistors including an NMOS gate oxide antifuse and a sense amplifier of inverter type. The layout area of the proposed OTP unit bit is $22{\mu}m^2$ similar to a conventional OTP unit bit. The programming time of the proposed OTP unit bit is 3.6msec that is improved than that of the conventional OTP unit bit because it doesn't use high voltage blocking elements such as high voltage blocking switch transistor and resistor. And the OTP array with the proposed OTP unit bit doesn't need sense amplifier and bias generation circuit that are used in a conventional OTP array because sense amplifier of inverter type is included to the proposed OTP unit bit.

Design of eFuse OTP Memory Programmable in the Post-Package State for PMICs (Post-Package 프로그램이 가능한 eFuse OTP 메모리 설계)

  • Jin, Liyan;Jang, Ji-Hye;Kim, Jae-Chul;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1734-1740
    • /
    • 2012
  • In this paper, we propose a FSOURCE circuit which requires such a small switching current that an eFuse OTP memory can be programmed in the post-package state of the PMIC chips using a single power supply. The proposed FSOURCE circuit removes its short-circuit current by using a non-overlapped clock and reduces its maximum current by reducing the turned-on slope of its driving transistor. Also, we propose a DOUT buffer circuit initializing the output data of the eFuse OTP memory with arbitrary data during the power-on reset mode. We design a 24-bit differential paired eFuse OTP memory which uses Magnachip's $0.35{\mu}m$ BCD process, and the layout size is $381.575{\mu}m{\times}354.375{\mu}m$($=0.135mm^2$).

Design of an Asynchronous eFuse One-Time Programmable Memory IP of 1 Kilo Bits Based on a Logic Process (Logic 공정 기반의 비동기식 1Kb eFuse OTP 메모리 IP 설계)

  • Lee, Jae-Hyung;Kang, Min-Cheol;Jin, Liyan;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1371-1378
    • /
    • 2009
  • We propose a low-power eFuse one-time programmable (OTP) memory cell based on a logic process. The eFuse OTP memory cell uses separate transistors optimized at program and read mode, and reduces an operation current at read mode by reducing parasitic capacitances existing at both WL and BL. Asynchronous interface, separate I/O, BL SA circuit of digital sensing method are used for a low-power and small-area eFuse OTP memory IP. It is shown by a computer simulation that operation currents at a logic power supply voltage of VDD and at I/O interface power supply voltage of VIO are 349.5${\mu}$A and 3.3${\mu}$A, respectively. The layout size of the designed eFuse OTP memory IP with Dongbu HiTek's 0.18${\mu}$m generic process is 300 ${\times}$557${\mu}m^2$.

An OTP Authorization System Based on Circular Pattern (원형 패턴 기반의 OTP 인증 시스템)

  • Kim, Ji Eun;Kim, Ho Jun;Park, Soo Hyeon;Hong, Seung Pyo;Song, Yang-Eui;Lee, Yong Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.87-90
    • /
    • 2015
  • 기존의 OTP(One-Time Password) 인증 시스템은 OTP 단말을 휴대해야하는 불편함이 있으며 생성한 OTP 값을 그대로 OTP 단말에 출력하기 때문에 주변에 쉽게 노출될 수 있다. 또한, 기존의 9자리 패턴 인식 방법은 같은 패턴 지점을 연속으로 인식시킬 수 없고 패턴을 그리는 경로에 다른 패턴 지점이 포함될 수 있다는 한계가 있어 제한적인 패턴 결과를 가진다. 따라서, 본 논문은 원형 배치된 패턴 지점 기반의 OTP 대칭 값 패턴 인증 시스템을 통해 OTP 단말을 휴대할 필요가 없게 하고, OTP의 각 자리 값을 대칭 값으로 표현함으로써 OTP 값의 노출을 막는다. 또한 모든 OTP 값으로 패턴 인식이 가능하도록 하기 위해 패턴 지점을 원형 배치하는 방법을 제안한다. 이는 직접적으로 OTP 값이 노출될 가능성을 감소시키고, OTP 인증을 위한 패턴 인식에서 패턴 지점을 원형 배치함으로써 모든 OTP 값이 패턴으로 변환될 수 있도록 한다. 본 논문은 패턴 지점의 원형 배치와 대칭 값을 이용한 OTP 인증 시스템을 제안하여 새로운 OTP 인증 방법으로 패턴 인식을 적용할 수 있도록 한다.

Design of High-Reliability eFuse OTP Memory for PMICs (PMIC용 고신뢰성 eFuse OTP 메모리 설계)

  • Yang, Huiling;Choi, In-Wha;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1455-1462
    • /
    • 2012
  • In this paper, a BCD process based high-reliability 24-bit dual-port eFuse OTP Memory for PMICs is designed. We propose a comparison circuit at program-verify-read mode to test that the program datum is correct by using a dynamic pseudo NMOS logic circuit. The comparison result of the program datum with its read datum is outputted to PFb (pass fail bar) pin. Thus, the normal operation of the designed OTP memory can be verified easily by checking the PFb pin. Also we propose a sensing margin test circuit with a variable pull-up load out of consideration for resistance variations of programmed eFuse at program-verify-read mode. We design a 24-bit eFuse OTP memory which uses Magnachip's $0.35{\mu}m$ BCD process, and the layout size is $289.9{\mu}m{\times}163.65{\mu}m$ ($=0.0475mm^2$).

Design of eFuse OTP Memory with Wide Operating Voltage Range for PMICs (PMIC용 넓은 동작전압 영역을 갖는 eFuse OTP 설계)

  • Jeong, Woo-Young;Hao, Wen-Chao;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • In this paper, reliability is secured by sensing a post-program resistance of several tens of kilo ohms and restricting a read current flowing over an unblown eFuse within $100{\mu}A$ since RWL driver and BL pull-up load circuits using a regulated voltage of V2V ($=2V{\pm}10%$) are proposed to have a wide operating voltage range for eFuse OTP memory. Also, when a comparison of a cell array of 1 row ${\times}$ 32 columns with that of 4 rows ${\times}$ 8 columns is done, the layout size of 4 rows ${\times}$ 8 columns is smaller with $187.065{\mu}m{\times}94.525{\mu}m$ ($=0.01768mm^2$) than that of 1 row ${\times}$ 32 columns with $735.96{\mu}m{\times}61.605{\mu}m$ ($=0.04534mm^2$).