• Title/Summary/Keyword: DCO (Digitally Controlled Oscillator)

Search Result 18, Processing Time 0.017 seconds

Design of a Digitally Controlled LC Oscillator Using DAC for WLAN Applications (WLAN 응용을 위한 DAC를 이용한 Digitally Controlled LC Oscillator 설계)

  • Seo, Hee-Teak;Park, Jun-Ho;Kwon, Duck-Ki;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC is employed to overcome the problems of dithering scheme. A 2.4GHz LC-based DCO has been designed in a $0.13{\mu}m$ CMOS process with an enhanced frequency resolution for wireless local area network applications. It has a frequency tuning range of 900MHz and a resolution of 58.8Hz. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The designed DCO exhibits a phase noise of -123.8dBc/Hz at 1MHz frequency offset. The DCO core consumes 4.2mA from 1.2V supply.

A PVT-compensated 2.2 to 3.0 GHz Digitally Controlled Oscillator for All-Digital PLL

  • Kavala, Anil;Bae, Woorham;Kim, Sungwoo;Hong, Gi-Moon;Chi, Hankyu;Kim, Suhwan;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.484-494
    • /
    • 2014
  • We describe a digitally controlled oscillator (DCO) which compensates the frequency variations for process, voltage, and temperature (PVT) variations with an accuracy of ${\pm}2.6%$ at 2.5 GHz. The DCO includes an 8 phase current-controlled ring oscillator, a digitally controlled current source (DCCS), a process and temperature (PT)-counteracting voltage regulator, and a bias current generator. The DCO operates at a center frequency of 2.5 GHz with a wide tuning range of 2.2 GHz to 3.0 GHz. At 2.8 GHz, the DCO achieves a phase noise of -112 dBc/Hz at 10 MHz offset. When it is implemented in an all-digital phase-locked loop (ADPLL), the ADPLL exhibits an RMS jitter of 8.9 ps and a peak to peak jitter of 77.5 ps. The proposed DCO and ADPLL are fabricated in 65 nm CMOS technology with supply voltages of 2.5 V and 1.0 V, respectively.

A Small-Area Solenoid Inductor Based Digitally Controlled Oscillator

  • Park, Hyung-Gu;Kim, SoYoung;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • This paper presents a wide band, fine-resolution digitally controlled oscillator (DCO) with an on-chip 3-D solenoid inductor using the 0.13 ${\mu}m$ digital CMOS process. The on-chip solenoid inductor is vertically constructed by using Metal and Via layers with a horizontal scalability. Compared to a spiral inductor, it has the advantage of occupying a small area and this is due to its 3-D structure. To control the frequency of the DCO, active capacitor and active inductor are tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO with solenoid inductor is fabricated in 0.13 ${\mu}m$ process and the die area of the solenoid inductor is 0.013 $mm^2$. The DCO tuning range is about 54 % at 4.1 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The measured phase noise of the DCO output at 5.195 GHz is -110.61 dBc/Hz at 1 MHz offset.

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Digitally controlled phase-locked loop with tracking analog-to-digital converter (Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop)

  • Cha, Soo-Ho;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.35-40
    • /
    • 2005
  • A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

A Design Procedure of Digitally Controlled Oscillator for Power Optimization (디지털 제어 발진기의 전력소모 최적화 설계기법)

  • Lee, Doo-Chan;Kim, Kyu-Young;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.94-99
    • /
    • 2010
  • This paper presents a design procedure of digitally controlled oscillator(DCO) for power optimization. By controlling coarse tuning bits and fine tuning bits of DCO, the proposed design procedure can optimize the power dissipation and does not affect the LSB resolution, frequency range, linearity, portability. For optimization, the relationship between control bits and power dissipation of the DCO was analyzed. The DCO circuits using and unusing proposed design technique have been designed, simulated and proved using 0.13um, 1.2V CMOS library. The DCO circuit with proposed design technique has operation range between 283MHz and 1.1GHz and has 1.7ps LSB resolution and consumes 2.789mW at frequency of 1GHz.

Design of a Wide Tuning Range DCO for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 DCO 설계)

  • Song, Sung-Gun;Park, Sung-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.614-621
    • /
    • 2011
  • This paper presents design of a wide tuning range digitally controlled oscillator(DCO) for Mobile-DTV applications. DCO is the key element of the ADPLL block that generates oscillation frequencies. We proposed a binary delay chain(BDC) structure, for wide tuning range DCO, modifying conventional fixed delay chain. The proposed structure generates oscillation frequencies by delay cell combination which has a variable delay time of $2^i$ in the range of $0{\leq}i{\leq}n-1$. The BOC structure can reduce the number of delay cells because it make possible to select delay cell and resolution. We simulated the proposed DCO by Cadence's Spectre RF tool in 1.8V chartered $0.18{\mu}m$ CMOS process. The simulation results showed 77MHz~2.07GHz frequency range and 3ps resolution. The phase noise yields -101dBc/Hz@1MHz at Mobile-DTV maximum frequency 1675MHz and the power consumption is 5.87mW. The proposed DCO satisfies Mobile-DTV standards such as ATSC-M/H, DVB-H, ISDB-T, T-DMB.

Design of a High-Resolution DCO Using a DAC (DAC를 이용한 고해상도 DCO 설계)

  • Seo, Hee-Teak;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1543-1551
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC(Digital-to-Analog Converter) is employed to overcome the problems of dithering scheme. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The proposed DCO has been designed in a $0.13{\mu}m$ CMOS process. Measurement results shows that the designed DCO oscillates in 2.8GHz~3.5GHz and has a frequency tuning range of 660MHz and a resolution of 73Hz at 2.8GHz band. The designed DCO exhibits a phase noise of -119dBc/Hz at lMHz frequency offset. The DCO core consumes 4.2mA from l.2V supply. The chip area is $1.3mm{\times}1.3mm$ including pads.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.