• Title/Summary/Keyword: Charge trapping

Search Result 143, Processing Time 0.022 seconds

Improved Memory Characteristics by NH3 Post Annealing for ZrO2 Based Charge Trapping Nonvolatile Memory

  • Tang, Zhenjie;Zhao, Dongqiu;Li, Rong;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.16-19
    • /
    • 2014
  • Charge trapping nonvolatile memory capacitors with $ZrO_2$ as charge trapping layer were fabricated, and the effects of post annealing atmosphere ($NH_3$ and $N_2$) on their memory storage characteristics were investigated. It was found that the memory windows were improved, after annealing treatment. The memory capacitor after $NH_3$ annealing treatment exhibited the best electrical characteristics, with a 6.8 V memory window, a lower charge loss ~22.3% up to ten years, even at $150^{\circ}C$, and excellent endurance (1.5% memory window degradation). The results are attributed to deep level bulk charge traps, induced by using $NH_3$ annealing.

Charge trapping characteristics of high-k $HfO_2$ layer for tunnel barrier engineered nonvolatile memory application (엔지니어드 터널베리어 메모리 적용을 위한 $HfO_2$ 층의 전하 트랩핑 특성)

  • You, Hee-Wook;Kim, Min-Soo;Park, Goon-Ho;Oh, Se-Man;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.133-133
    • /
    • 2009
  • It is desirable to choose a high-k material having a large band offset with the tunneling oxide and a deep trapping level for use as the charge trapping layer to achieve high PIE (Programming/erasing) speeds and good reliability, respectively. In this paper, charge trapping and tunneling characteristics of high-k hafnium oxide ($HfO_2$) layer with various thicknesses were investigated for applications of tunnel barrier engineered nonvolatile memory. A critical thickness of $HfO_2$ layer for suppressing the charge trapping and enhancing the tunneling sensitivity of tunnel barrier were developed. Also, the charge trap centroid and charge trap density were extracted by constant current stress (CCS) method. As a result, the optimization of $HfO_2$ thickness considerably improved the performances of non-volatile memory(NVM).

  • PDF

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Study on the Structural Stability and Charge Trapping Properties of High-k HfO2 and HFO2/Al2O3/HfO2 Stacks (High-k HfO2와 HfO2/Al2O3/HfO2 적층막의 구조 안정성 및 전하 트랩핑 특성 연구)

  • Ahn, Young-Soo;Huh, Min-Young;Kang, Hae-Yoon;Sohn, Hyunchul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • In this work, high-k dielectric stacks of $HfO_2$ and $HfO_2$/$Al_2O_3$/$HfO_2$ (HAH) were deposited on $SiO_2/Si$ substrates by atomic layer deposition as charge trapping layers in charge trapping devices. The structural stability and the charge trapping characteristics of such stacks were investigated using Metal-Alumina-Hafnia-Oxide-Silicon (MAHOS) structure. The surface roughness of $HfO_2$ was stable up to 11 nm with the insertion of 0.2 nm thick $Al_2O_3$. The effect of the thickness of the HAH stack and the thickness of intermediate $Al_2O_3$ on charge trapping characteristics were investigated for MAHOS structure under various gate bias pulse with duration of 100 ms. The threshold voltage shift after programming and erase showed that the memory window was increased with increasing bias on gate. However, the programming window was independent of the thickness of HAH charge trapping layers. When the thickness of $Al_2O_3$insertion increased from 0.2 nm to 1 nm, the erase window was decreased without change in the programming window.

Effects of Composition on the Memory Characteristics of (HfO2)x(Al2O3)1-x Based Charge Trap Nonvolatile Memory

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Zhao, Dongqiu;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.241-244
    • /
    • 2014
  • Charge trap flash memory capacitors incorporating $(HfO_2)_x(Al_2O_3)_{1-x}$ film, as the charge trapping layer, were fabricated. The effects of the charge trapping layer composition on the memory characteristics were investigated. It is found that the memory window and charge retention performance can be improved by adding Al atoms into pure $HfO_2$; further, the memory capacitor with a $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer exhibits optimized memory characteristics even at high temperatures. The results should be attributed to the large band offsets and minimum trap energy levels. Therefore, the $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer may be useful in future nonvolatile flash memory device application.

Reliability Analysis by Lateral Charge Migration in Charge Trapping Layer of SONOS NAND Flash Memory Devices (SONOS NAND 플래시 메모리 소자에서의 Lateral Charge Migration에 의한 소자 안정성 연구)

  • Sung, Jae Young;Jeong, Jun Kyo;Lee, Ga Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.138-142
    • /
    • 2019
  • As the NAND flash memory goes to 3D vertical Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) structure, the lateral charge migration can be critical in the reliability performance. Even more, with miniaturization of flash memory cell device, just a little movement of trapped charge can cause reliability problems. In this paper, we propose a method of predicting the trapped charge profile in the retention mode. Charge diffusivity in the charge trapping layer (Si3N4) was extracted experimentally, and the effect on the trapped charge profile was demonstrated by the simulation and experiment.

Charge trap characteristics with $Si_3N_4$ tmp layer thickness ($Si_3N_4$ trap layer의 두께에 따른 charge trap 특성)

  • Jung, Myung-Ho;Kim, Kwan-Su;Park, Goon-Ho;Kim, Min-Soo;Jung, Jong-Wan;Jung, Hong-Bae;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.124-125
    • /
    • 2008
  • The charge trapping and tunnelling characteristics with various thickness of $Si_3N_4$ layer were investigated for application of TBE (Tunnel Barrier Engineered) non-volatile memory. We confirmed that the critical thickness of no charge trapping was existed with decreasing $Si_3N_4$ thickness. Also, the charge trap centroid x and charge trap density were extracted by using CCS (Constant Current Stress) method. Through the optimized thickness of $Si_3N_4$ layer, it can be improve the performance of non-volatile memory.

  • PDF

Charge Trapping Mechanism in Amorphous Si-In-Zn-O Thin-Film Transistors During Positive Bias Stress

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.380-382
    • /
    • 2016
  • The mechanism for instability under PBS (positive bias stress) in amorphous SIZO (Si-In-Zn-O) thin-film transistors was investigated by analyzing the charge trapping mechanism. It was found that the bulk traps in the SIZO channel layer and the channel/dielectric interfacial traps are not created during the PBS duration. This result suggests that charge trapping in gate dielectric, and/or in oxide semiconductor bulk, and/or at the channel/dielectric interface is a more dominant mechanism than the creation of defects in the SIZO-TFTs.

The Charge Trapping Properties of ONO Dielectric Films (재산화된 질화산화막의 전하포획 특성)

  • 박광균;오환술;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.56-62
    • /
    • 1992
  • This paper is analyzed the charge trapping and electrical properties of 0(Oxide), NO(Nitrided oxide) and ONO(Reoxidized nitrided oxide) as dielectric films in MIS structures. We have processed bottom oxide and top oxide by the thermal method, and nitride(Si$_{3}N_{4}$) by the LPCVD(Low Pressure Chemical Vapor Deposition) method on P-type(100) Silicon wafer. We have studied the charge trapping properties of the dielectrics by using a computer controlled DLTS system. All of the dielectric films are shown peak nearly at 300K. Those are bulk traps. Many trap densities which is detected in NO films, but traps. Many trap densities which is detected in NO films. Varing the nitride thickness, the trap densities of thinner nitride is decreased than the thicker nitride. Finally we have found that trap densities of ONO films is affected by nitride thickness.

  • PDF

Irreversible Charge Trapping at the Semiconductor/Polymer Interface of Organic Field-Effect Transistors (유기전계효과 트랜지스터의 반도체/고분자절연체 계면에 발생하는 비가역적 전하트래핑에 관한 연구)

  • Im, Jaemin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.129-134
    • /
    • 2020
  • Understanding charge trapping at the interface between conjugated semiconductor and polymer dielectric basically gives insight into the development of long-term stable organic field-effect transistors (OFET). Here, the charge transport properties of OFETs using polymer dielectric with various molecular weights (MWs) have been investigated. The conjugated semiconductor, pentacene exhibited morphology and crystallinity, insensitive to MWs of polymethyl methacrylate (PMMA) dielectric. Consequently, transfer curves and field-effect mobilities of as-prepared devices are independent of MWs. Under bias stress in humid environment, however, the drain current decay as well as transfer curve shift are found to increase as the MW of PMMA decreases (MW effect). The charge trapping induced by MW effect is irreversible, that is, the localized charges are difficult to be delocalized. The MW effect is caused by the variation in the density of polymer chain ends in the PMMA: the free volumes at the PMMA chain ends act as charge trap sites, corresponding to drain current decay depending on MWs of PMMA.