Browse > Article
http://dx.doi.org/10.17702/jai.2020.21.4.129

Irreversible Charge Trapping at the Semiconductor/Polymer Interface of Organic Field-Effect Transistors  

Im, Jaemin (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Choi, Hyun Ho (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Journal of Adhesion and Interface / v.21, no.4, 2020 , pp. 129-134 More about this Journal
Abstract
Understanding charge trapping at the interface between conjugated semiconductor and polymer dielectric basically gives insight into the development of long-term stable organic field-effect transistors (OFET). Here, the charge transport properties of OFETs using polymer dielectric with various molecular weights (MWs) have been investigated. The conjugated semiconductor, pentacene exhibited morphology and crystallinity, insensitive to MWs of polymethyl methacrylate (PMMA) dielectric. Consequently, transfer curves and field-effect mobilities of as-prepared devices are independent of MWs. Under bias stress in humid environment, however, the drain current decay as well as transfer curve shift are found to increase as the MW of PMMA decreases (MW effect). The charge trapping induced by MW effect is irreversible, that is, the localized charges are difficult to be delocalized. The MW effect is caused by the variation in the density of polymer chain ends in the PMMA: the free volumes at the PMMA chain ends act as charge trap sites, corresponding to drain current decay depending on MWs of PMMA.
Keywords
organic field-effect transistor; bias-stress stability; charge trapping; molecular weight;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater., 30, 1801079 (2018).   DOI
2 S. Park, S. H. Kim, H. H. Choi, B. Kang, K. Cho, Adv. Funct. Mater., 30, 1904590 (2020).   DOI
3 S. G. Lee, H. H. Choi, Journal of Adhesion and Interface, 20, 162 (2019).
4 W. H. Lee, H. H. Choi, D. H. Kim, K. Cho, Adv Mater., 26, 1660 (2014).   DOI
5 C. Kim, A. Facchetti, T. J. Marks, Science, 318, 76 (2007).   DOI
6 X. Sun, Y. Liu, C. Di, Y. Wen, Y. Guo, L. Zhang, Y. Zhao, G. Yu, Adv. Mater., 23, 1009 (2011).   DOI
7 H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, K. Cho, J. Am. Chem. Soc., 130, 10556 (2008).   DOI
8 H. Yang, T. J. Shin, MM. Ling, J. Am. Chem. Soc., 127, 11542 (2005).   DOI
9 D. W. Schubert, Polymer Bulletin, 38, 177 (1997).   DOI
10 G. Horowitz, Adv. Mater., 10, 365 (1998).   DOI
11 B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel, V. Podzorov, Phys. Rev. B., 82, 085302 (2010).   DOI
12 V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett., 93, 086602 (2004).   DOI
13 H. H. Choi, W. H. Lee, K. Cho, Adv. Funct. Mater., 22, 4833 (2012).   DOI
14 W. C. Yu, C. S. P. Sung, R. E. Robertson, Macromolecules, 21, 355 (1988).   DOI
15 J. Liu, Q. Deng, Y. C. Jean, Macromolecules, 26, 7149 (1993).   DOI
16 A. Sharma, S. G. J. Mathijssen, E. C. P. Smits, M. Kemerink, D. M. de Leeuw, P. A. Bobbert, Phys. Rev. B., 82, 075322 (2010).   DOI