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The mechanism for instability under PBS (positive bias stress) in amorphous SIZO (Si-In-Zn-0) thin-film transistors
was investigated by analyzing the charge trapping mechanism. It was found that the bulk traps in the SIZO channel
layer and the channel/dielectric interfacial traps are not created during the PBS duration. This result suggests that
charge trapping in gate dielectric, and/or in oxide semiconductor bulk, and/or at the channel/dielectric interface is a
more dominant mechanism than the creation of defects in the SIZO-TFTs.
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1. INTRODUCTION

Highly TAOSs (transparent amorphous oxide semiconductors)
based TFTs (thin-film transistors) have attracted considerable
interest in applications including future displays, optoelectron-
ics, and electronics [1,2]. Especially, it has been anticipated that
TAOSs such as GIZO (Ga-In-Zn-0) [3], HIZO (Hf-In-Zn-0O) [4],
ZTO (Zn-Sn-0) [5], SIZO (Si-In-Zn-0) [6], etc. can resolve the
innate drawbacks of current Si based TFTs including the poor
carrier mobility of amorphous Si TFTs and the non-uniformity
in electrical performances of low temperature processed poly-
Si TFTs [7]. The TAOSs based TFTs provide better uniformities
and electrical properties than those of the poly-Si based TFTs,
since the crystallites that make the TFTs inhomogeneous are
not included in the TAOSs and a high electron mobility can be
achieved even in amorphous state due to the high symmetry of
the s-orbitals of heavy metal ions [8]. In order to improve the sta-
bility under positive/negative bias stress, illumination stress, and
temperature stress, the fundamental mechanisms for the thresh-
old voltage shift have been intensively investigated for GIZO-
[8] and HIZO-TFTs [9]. Recently, it was reported that a high field
effect mobility and good stability were achieved by a very small
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amount of SIZO (Si incorporated In-Zn-0) TFTs fabricated at a
very low process temperature of 150°C [10]. The post annealing
process with low temperature will facilitate the application of a
SIZO oxide semiconductor to flexible displays. Considering the
20% change in the luminance owing to a threshold voltage shift
of 0.1V [11], much improvement can still be made in the stability
in SIZO-TFTs. In earlier works, we reported that the instability
under PBS (positive bias stress) of the SIZO-TFTs is attributed
to the charge trapping in the semiconductor bulk and at the
semiconductor/dielectric interface by extracting the density of
states in TFTs using the SIZO layer [10]; the possibility of defect
creation during the PBS in the SIZO-TFTs remained unproven.
Thus, we first need to prove that the defect creation model is not
a dominant mechanism in the SIZO-TFTs.

In this paper, the mechanism for instability of 1 wt.% Si incor-
porated SIZO-TFT under PBS was investigated from the charge
trapping mechanism [12]. The variation of the subgap (DOSs)
within the energy range from the conduction band edge (E,) to
1.6 eV below E_ was not observed during the PBS tests. This dem-
onstrates that the defect creation in the active channel layer bulk
and at the channel/dielectric interface is not responsible for the
positive VTH shift under the PBS in the SIZO-TFT.

2. EXPERIMENTAL

The direct current sputtering method was used to deposit 150
nm thick Mo gate electrode on glass substrate at room tempera-
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Fig. 1. Schematic of an a-SIZO (Si-In-Zn-0) thin film transistor.

ture, and 200 nm thick SiNx as a gate insulator was then grown
by plasma enhanced chemical vapor deposition (PECVD). An
amorphous 1 wt.% Si incorporated SIZO (In,0;:Zn0=3:1) active
layer of 30 nm in thickness was prepared by radio frequency
magnetron sputtering at room temperature. The SIZO active
layer and source/drain (S/D) electrodes were well defined by
the conventional photolithography and wet etching process,
in which the SIZO film and S/D were etched and patterned by
99% diluted hydrochloric acid and acetone as an etchant, re-
spectively. Ti/Au (10 nm/60 nm) as source/drain electrodes were
deposited by electron beam evaporation and thermal evapora-
tion method, respectively. The well-defined channel length and
width of the SIZO-TFTs were 200 pm and 100 pm, respectively as
shown in Fig. 1.

The SIZO-TFTs were annealed at 150C for 1 h in a thermal fur-
nace with N2 ambience. All the transfer curves and stability tests
were evaluated using a semiconductor parameter analyzer (HP
4145B) probe system in a dark and vacuum state of < 2x107? Torr.
The bias for the stress tests was kept at a gate voltage of 20 V and
a drain to source voltage of 10.1 V for 1,500 s at room tempera-
ture.

3. RESULTS AND DISCUSSION

Figure 2 shows the evolution of the transfer curves obtained at
the drain to source voltage (Vpg) of 0.1 V from amorphous SIZO-
TFT under PBS with increasing stress time.

The PBS was kept at a gate to source voltage (Vi) of 20 V and
Vps=10.1 V for 1,500 sec. The transfer curves shifted toward the
positive direction with increasing stress time. As a result, the
threshold voltage (V) shift for the SIZO-TFT was about 5.7 V for
1,500 sec. The square root of the drain to source current (Is) as a
function of Vg atV,g=0.1V is almost linear, as shown in Fig. 3.
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Fig. 2. Evolution of transfer curves.
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Fig. 3. Square root plots of I,,; with PBS duration.
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Fig. 4. (a) SS and pg and (b) Vy, and I, ratio as a function of stress
time.

Thus, the Vi, values were extracted by fitting a straight line to
the plot [13]. The variations of electrical parameters such as sub-
threshold swing (SS), field effect mobility (u;), VTH, and on-off
current ratio (I, ratio) with stress time are shown in Figs. 4(a)
and 4(b).

The SS and pg; values only slightly changed with increasing
stress duration. It has been reported that the positive shift in Vi
during PBS can be explained using a simple charge trapping or
defect creation model [14-16]. In the case of SIZO-TFT, the SS
values did not significantly change during PBS duration. This
result suggests that charge trapping in gate dielectric, and/or
in oxide semiconductor bulk, and/or at the channel/dielectric
interface is a more dominant mechanism than the creation of
defects in the SIZO-TFTs [3,14].
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4. CONCLUSIONS

In summary, by directly analyzing SS values and Vy, shift in
SIZO-TFTs during PBS tests, it was found that the Vy; shift un-
der PBS tests originated by charge trapping in the SIZO channel
bulk and/or at the channel/dielectric interface rather than due
to defect creation. This was confirmed by the constant SS value
and reduced hysteresis loop as PBS time increased. In the case
of SIZO-TFT, the SS values did not significantly change during
the PBS duration. This result suggests that charge trapping in the
gate dielectric, and/or in oxide semiconductor bulk, and/or at
the channel/dielectric interface is a more dominant mechanism
than the creation of defects in the SIZO-TFTs.
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