• Title/Summary/Keyword: 연결선 테스트

Search Result 16, Processing Time 0.019 seconds

A Minimized Test Pattern Generation Method for Ground Bounce Effect and Delay Fault Detection (그라운드 바운스 영향과 지연고장을 위한 최소화된 테스트 패턴 생성 기법)

  • 김문준;이정민;장훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.69-77
    • /
    • 2004
  • An efficient board-level interconnect test algorithm is proposed considering both the ground bounce effect and the delay fault detection. The proposed algorithm is capable of IEEE 1149.1 interconnect test, negative ground bounce effect prevention, and also detects delay faults as well. The number of final test pattern set is not much different with the previous method, even our method enables to detect the delay faults in addition to the abilities the previous method guarantees.

Delay Fault Test for Interconnection on Boards and SoCs (칩 및 코아간 연결선의 지연 고장 테스트)

  • Yi, Hyun-Bean;Kim, Doo-Young;Han, Ju-Hee;Park, Sung-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.2
    • /
    • pp.84-92
    • /
    • 2007
  • This paper proposes an interconnect delay fault test (IDFT) solution on boards and SoCs based on IEEE 1149.1 and IEEE P1500. A new IDFT system clock rising edge generator which forces output boundary scan cells to update test data at the rising edge of system clock and input boundary scan cells to capture the test data at the next rising edge of the system clock is introduced. Using this proposed circuit, IDFT for interconnects synchronized to different system clocks in frequency can be achieved efficiently. Moreover, the proposed IDFT technique does not require any modification of the boundary scan cells or the standard TAP controller and simplifies the test procedure and reduces the area overhead.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Yang, Myung-Hoon;Park, Young-Kyu;Lee, Dae-Yeal;Yoon, Hyun-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Semiconductor testing area challenges many testing issues due to the minimization and ultra high performance of current semiconductors. Among these issues, signal integrity test on interconnections must be solved for highly integrated circuits like SoC. In this paper, we propose an effective pattern application method for signal integrity test on interconnects. Proposed method can be applied by using boundary scan architecture and very efficient test can be preceded with pretty short test time.

An Efficient Diagnosis Algorithm for SRAM-Based FPGA Interconnects (SRAM 기반의 FPGA 연결선을 위한 고장 진단 알고리듬 개발)

  • 김용준;김지혜;전성훈;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.113-122
    • /
    • 2004
  • A new diagnosis method for FPGA interconnects is developed. The proposed method diagnoses all the fault types for FPGA interconnects. It is also applied to all the modem FPGA devices like Xilinx Virtex FPGAS. Most of all, it takes shorter time to diagnose all the faults than previous diagnosis methods.

An Efficient Interconnect Test Pattern Generation Algorithm for Crosstalk Faults (Crosstalk 고장 점검을 위한 효과적인 연결선 테스트 패턴 생성 알고리즘에 관한 연구)

  • Han, Ju-Hee;Song, Jae-Hoon;Yi, Hyun-Bean;Kim, Jin-Kyu;Park, Sung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.71-76
    • /
    • 2007
  • The effect of crosstalk errors is most significant in high-performance circuits. This paper presents effective test patterns for SoC and Board level interconnects considering actual effective aggressors. Initially '6n' algorithm, where 'n' is the total number of interconnect nets, is analyzed to detect and diagnose 100% crosstalk faults. Then, more efficient algorithm is proposed reducing the number of test patterns significantly while maintaining complete crosstalk fault coverage.

Efficient Interconnect Test Patterns and BIST Implementation for Crosstalk and Static Faults (Crosstalk과 정적 고장을 고려한 효과적인 연결선 테스트 알고리즘 및 BIST 구현)

  • Min Pyoungwo;Yi Hyunbean;Song Jaehoon;Park Sungju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.37-44
    • /
    • 2005
  • This paper presents effective test patterns and their BIST implementations for SoC and Board interconnects. Initially '6n'algorithm, where 'n' is the total number of interconnect nets, is introduced to completely detect and diagnose both static and crosstalk faults. Then, more economic 4n+1 algorithm is described to perfectly capture the crosstalk faults for the interconnect nets separated within a certain distance. It will be shown that both algorithms can be easily implemented as interconnect BIST hardwares with small area penalty than conventional LFSR.

Interconnect Delay Fault Test in Boards and SoCs with Multiple System Clocks (다중 시스템 클럭으로 동작하는 보드 및 SoC의 연결선 지연 고장 테스트)

  • Lee Hyunbean;Kim Younghun;Park Sungju;Park Changwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.37-44
    • /
    • 2006
  • This paper proposes an interconnect delay fault test (IDFT) solution on boards and SoCs based on IEEE 1149.1 and IEEE P1500. A new IDFT system clock rising edge generator which forces output boundary scan cells to update test data at the rising edge of system clock and input boundary scan cells to capture the test data at the next rising edge of the system clock is introduced. Using this proposed circuit, IDFT for interconnects synchronized to different system clocks in frequency can be achieved efficiently. Moreover, the proposed IDFT technique does not require any modification of the boundary scan cells or the standard TAP controller is simple in terms of test procedure and is small in terms of area overhead.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.39-44
    • /
    • 2008
  • Scan architecture is very effective design-for-testability technique that is widely used for high testability, however, it requires so much test time due to test vector shifting time. In this paper, an efficient scan test method is presented that is based on the Illinois scan architecture. The proposed method maximizes the common input effect via a scan chain selection scheme. Experimental results show the proposed method requires very short test time and small data volume by increasing the efficiency of common input effect.

At-speed Interconnect Test Controller for SoC with Multiple System Clocks and Heterogeneous Cores (다중 시스템 클럭과 이종 코아를 가진 시스템 온 칩을 위한 연결선 지연 고장 테스트 제어기)

  • Jang Yeonsil;Lee Hyunbin;Shin Hyunchul;Park Sungju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.39-46
    • /
    • 2005
  • This paper introduces a new At-speed Interconnect Test Controller (ASITC) that can detect and diagnose dynamic as well as static defects in an SoC. SoC is comprised of IEEE 1149.1 and P1500 wrapped cores which can be operated by multiple system clocks. In other to test such a complicated SoC, we designed a interface module for P1500 wrapped cores and the ASITC that makes it possible to detect interconnect delay faults during 1 system clock from launching to capturing the transition signal. The ASITC proposed requires less area overhead than other approaches and the operation was verified through the FPGA implementation

A New Complete Diagnosis Patterns for Wiring Interconnects (연결선의 완벽한 진단을 위한 테스트 패턴의 생성)

  • Park Sungju
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.114-120
    • /
    • 1995
  • It is important to test the various kinds of interconnect faults between chips on a card/module. When boundary scan design techniques are adopted, the chip to chip interconnection test generation and application of test patterns is greatly simplified. Various test generation algorithms have been developed for interconnect faults. A new interconnect test generation algorithm is introduced. It reduces the number of test patterns by half over present techniques. It also guarantees the complete diagnosis of mutiple interconnect faults.

  • PDF