2007.04a
-
The characteristics of asymmetric vortex and side force of tangent-ogive-cylinder flight vehicle at high angles of attack have been performed by using upwind Navier-Stokes method with the
${\kappa}-{\omega}$ turbulence model. And Asymmetric transition positions are considered for generation of asymmetric vortex. -
Unsteady flow simulation for the tiltrotor Smart UAV configuration was performed to investigate the powered rotor wake effect on aerodynamic characteristics. Calculations were performed to simulate various flow conditions based on different flight modes including hover, conversion and cruise. Three-dimensional compressible Navier-Stokes equation code were used for flow calculation and Chimera grid technique overlapping individually generated grids was employed. A dynamic grid method was adopted in simulation of the rotating blades. Flow calculations were also conducted for the un-powered case. Aerodynamic interaction between the rotor and airframe was investigated comparing three data sets from the un-powered, powered, and isolated rotor cases.
-
A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.
-
Chimera grid Method is widely used in Computational Fluid Dynamics due to its simplicity in constructing grid system over complex bodies. Especially, Chimera grid method is suitable for unsteady flow computations with bodies in relative motions. However, interpolation procedure for ensuring continuity of solution over overlapped region fails when so-call orphan cells are present. We have adopted MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with orphan cells. MSL is one of interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.
-
We present an improved immersed boundary method for computing incompressible viscous flow around an arbitrarily moving body on a fixed computational grid The main idea is to incorporate feedback forcing scheme of virtual boundary method with Peskin's regularized delta function approach in order to use large CFL number and transfer quantities between Eulerian and Lagrangian domain effectively. From the analysis of stability limits and effects of feedback forcing gains, optimum regions of the feedback forcing are suggested.
-
The implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes, which can achieve higher-order accuracy by wing hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. And, the flows around a circle and a NACA0012 airfoil was also numerically simulated. Numerical results show that the implicit discontinuous Galerkin methods with higher-order representation of curved solid boundaries can be an efficient higher-order method to obtain very accurate numerical solutions on unstructured meshes.
-
A large eddy simulation method with unstructured mesh is presented. Two explicit filtering procedures are adopted for reducing the aliasing error of the nonlinear convective term and measuring the level of subgrid scale velocity fluctuation, respectively. The developed subgrid scale model is basically an eddy viscosity model which depends on both local velocity fluctuation level and local grid scale. As a validation problem, the flows around a sphere of several Reynolds numbers are simulated and some characteristic quantities are compared to experimental data and numerical results in the literature.
-
Asymmetric force and vibration caused by separation flow at high angle of attack affect the stability of supersonic missile. As a preliminary study we verified the effect of turbulence model through general 3-D slender body for the supersonic flow at high angle of attack.
${\kappa}-{\omega}$ Wilcox model,${\kappa}-{\omega}$ Wilcox-Durbin+ model,${\kappa}-{\omega}$ shear-stress transport model, and Spalart-Allmaras one equation model are used. Grid sensitivity test was performed with three different grid system. results show that all models are in good agreement with the experimental data. -
In the present paper, some difficulties encountered in predicting airfoil characteristics are described and solutions for those problems are discussed Since drag is determined by the amounts of pressure and, especially, shear stress, accurate estimation of shear stress is very crucial. However shear stress computation is dependent on the grid density and turbulence model, it should be consistent in preparing grid and turbulence model. When the transition from laminar to turbulent happen at the middle of airfoil, CFD solver should divide the region into laminar and turbulent region based on the transition location.
-
The quality of chaotic mixing in square cavity flow was studied numerically by CFD simulation and particle tracking technique. The chaotic mixing was generated by using time-periodic electro-osmotic flow. Finite Volume Method (FVM) was employed to get the stretching and folding field in cavity domain. With adjusting the initial condition of concentration distribution, the best values of modulation period and Peclet number which gave us good mixing performance was determined precisely. From
$Poicar{\acute{e}}section$ and Lyapunov exponents for characteristic trajectories we find that mixing performance also depends on modulation period. The higher value of modulation period, the better mixing performance wag achieved in this case. Furthermore, the results for tracking particle trajectories were also compared between using of Bilinear Interpolation and Higher-order scheme. The values of modulation period for obtaining best mixing effect were matched between using FVM and particle tracking techniques. -
With the recent increasing demand on the high-performance buildings, there has been a rapid growth in the application of the Computational Fluid Dynamics to the Building design. The conceptual ventilation design of the underground parking area currently under construction is validated using the CFD-ACE+. It has been found that the conceptual ventilation design quantitively satisfies the legal standards. However, the highly concentrated region of CO is predicted. The positions and blowing directions of ventilating lane are changed based on the previously predicted concentration distributions. The highly concentrated region of CO is slightly reduced, but not much change has been observed. Two more fang are installed and the positions and blowing directions of the fans are modified so that the highly concentrated region of CO is minimized.
-
In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique is adopted considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel of platform are included in a computational domain and detailed shape of train is also modeled Numerical analyses were conducted on five operational condition which are different velocity variation of subway train, existence of stationary train and passing each other trains. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation was found to be satisfactory to various foreign standards.
-
An optimized bidet nozzle design to form the required swirl water jet is proposed with the help of numerical analysis. The bidet can do the cleaning process of human body by water injection and the speed/pressure/injection angle/magnitude of swirl intensity of water jet determine the cleaning capability and personal subjective feeling. The objective of this research is to design optimal water injection nozzle to make stable swirl intensity. The effect of individual design variables are analyzed from the basic design and the final design is deduced to make high performance water jet within the pre-determined operation conditions.
-
To develop the aerodynamic performance, there are widely two group of studies are achieved. The first one is about design of the vehicles geometry and the second one is about aerodynamic devices. Geometry design is highly credible and stable method. But it is not flexible and each parts are related interactively. So if one part geometry are modified, the other parts are required to be redesigned. The other hand, flow control by aerodynamic device is flexible and modulized method. Though it needs energy, relatively little input makes far advanced aerodynamic performance. Synthetic Jet is one of the second group method. The device repeats suction and blowing motion in constant frequency. According to the performance, the flow which are near the flight surface are served momentum. This mechanism can reduce the aerodynamic loss by boundary layer and separated flow. Synthetic jet actuator has several parameters, that influence the flow control. This study focus the parameters effects of the synthetic jet - orifice geometry, frequency, jet speed and etc.
-
The aerodynamic coefficients of Apollo capsule are calculated using a DSMC solver, SMILE, and the results agree very well with the data predicted by NASA. The aerodynamic characteristics of an orbital block which operates at high altitudes in the free molecule regime are also predicted. For the nominal flow conditions, the predicted aerodynamic force is very small since the dynamic pressure is extremely low. And the additional aerodynamic coefficients for the analysis of the attitude control are presented as the angle of attack and the side slip angle vary from
$+45^{\circ}\;to\;-45^{\circ}$ of the nominal angle. -
Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.
-
A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG
${\kappa}-{\varepsilon}\;SST$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray model. For the purpose of verification of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX. -
A GUI based pre/post processor program, which is based on the MFC and OpenGL library in the Windows O/S, hee been developed for NUFLEX Using this program, users are able to generate and modify structured or unstructured grid geometries, set all the parameters for the solver, and observe the results of the simulation in graphic view by vector or scalar plots. The mesh geometry data can be imported from or exported to other programs by supporting functions for reading from and writing to CGNS data format files.
-
A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid} method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.
-
NUFLEX is a general purpose program for the analysis 3D thermo/fluid flow and pre/post processor in a complex geometry. NUFLEX is composed various physical models, such as phase change(solidification/melting) and spray, MHD(Magneto Hydraulic Dynamics) models. It is possible to simulate of continuous cast iron process and spray droplet breakup/collision phenomenon. For the verification of these models, compared with the experimental data and commercial CFD code's results. The results show good agreements with experimental and comercial CFD codes's results.
-
Computational Fluid Dynamics (CFD in short) approach is now playing an important role in the engineering process recently. Generating proper grid system for the region of interest in time is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches. In this paper an automated triangular surface grid generation using CAD surface data is proposed According to the present method, the CAD surface data imported in the STL format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.
-
A fast and robust method of grid generation to multiple functions has been developed for flow analysis in three dimensional space. It is based on the Non-Uniform Rational B-Spline of an approximation method. The grid generation method, details of numerical implementation. examples of application, and potential extensions of the current method are illustrated in this paper.
-
객체지향 언어인 JAVA를 이용하여 Web-기반의 운동 해석 프로그램을 개발하였다. 지금까지 운동해석에 관한 대부분의 프로그램은 Fortran, C, C++ 와 같은 언어로 이루어져 있으며 이 경우 계산 속도는 빠르지만 각 언어의 Compiler 와 Builder를 필요로 한다. 따라서 사용된 각각의 언어에 대한 Compiler 및 Builder가 사용자의 개인용 컴퓨터 상에서만 설치 및 구동될 수 있으며 그로 인해 사용자는 계산된 Data형 결과물만을 얻을 수 있었다. 본 연구에서는 이를 개선하고자 객체지향형 언어인 JAVA를 이용하여 운동해석 프로그램을 구성할 수 있는 기반을 구축하였으며 Web과 연동하여 시간적 공간적 제약을 극복하고 사용자의 의견 개입을 가능하게 하였다. 일반적으로 JAVA 언어는 연산속도가 느려서 수치해석용으로는 부적합 하다는 평이 지배적 이였으나 컴퓨터의 성능 발달로 이는 개선이 될 수 있으며, 이는 사용자가 시간적 공간적 제약을 받지 않고 사용 가능하다는 점에서 극복되어 질 수 있다.
-
In this study the unsteady aerodynamic analysis of a hovering helicopter rotor is performed. For the accurate flow field analysis Euler equations and the free wake method are coupled. The Euler equations are solved to find the pressure distribution around the rotor, and free wake method is used to give the boundary condition for the solution of Euler equations. Also, vortex strength and wake motion after the rotor are simulated by the free wake method. The accuracy of the present method is compared with the source sink model. The present method is applied to the hovering Caradonna-Tung rotor and compared with experimental results.
-
Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.
-
In this paper a method for the design optimization for helicopter rotor blade in hover is studied Numerical analysis of aerodynamic characteristics of the flow around a rotor blade is analysed by usign panel method and CFD code based on Navier-Stokes equation. The result is validated by comparing with existing experimental result. Optimization methods RSM(Response Surface Method) and DOE(Design of Experiments) are applied in combination. The object functions are power, twist angle, taper ratio, and thrust. The optimized result showed a decrease of 17% of the power required.
-
A two-phase method in CFD has been developed and is applied to model the cavitation flow. The governing equation system is two-phase Navier-Stokes equation, comprised of the mixture mass, momentum and liquid-phase mass equation. It employs an implicite, dual time, preconditioned algorithm using finite difference scheme in curvilineal coordinates and Chien
${\kappa}-{\varepsilon}$ turbulence equation. The experimental cavitating flows around ogive-cylinder and venturi type objects are employed to test the solver. To prove the capabilities of the solver, several three-dimentional examples are presented. -
Aero-Heating phenomenon is one of the severe problems occurring in high speed missile flight. in the high speed flight, not only stagnation point but also aft body parts encounter high temperature related structural problems. But the phenomenon is not easy to predict accurately because unsteady calculation according to a flight trajectory is needed, and takes much time. In this Paper, a fast and precise scheme is introduced, which calculates heat flow and temperature by simple pressure field prediction on a missile.
-
A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density became it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise wag diminished by the separation on the suction surface and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 90% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the low Reynolds number on the performance were analyzed in detail.
-
The realizability condition has been applied to modern turbulence models, Simulations are performed to compare
${\kappa}-{\omega}$ turbulence models imposing the realizability condition. An improvement to the${\kappa}-{\varepsilon}$ turbulence model is also presented and shown to lead to better agreement with data for supersonic base flows. The improvement is achieved by imposing a grid-independent realizability constraint in the Launder-Sharma${\kappa}-{\varepsilon}$ model. Numerical results for several test problems show a critical role of the realizability constraint in the prediction of separated flows. -
The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.
-
Since the introduction of Nanoimprint in the mid-1990s, Nanoimprint lithography, a low-cost, non-convential method, has been the dominant lithography technology that guarantees high-throughput patterning of nanostructures. Based on the mechanical embossing mechanism, Nanoimprint lithography creates the nanopatterns on the polymer material cast on the substrate. In essence, the process needs nanofabrication equipment for printing with the adequate control of temperature, pressure and control of parallels of the stamp and substrate. This article introduce the possibility and reality of the thermal control on the hot plate using a CFD code. Numerical computation has been conducted for assessing the feasibility of a hot plate(
$120{\times}120\;mm2$ ). PID control is adopted to ensure high temperature uniformity in several zones. Parallel experiments have also been performed for verifying thermal performance. Not only show the results the optimum number of thermocouples related to controllers but also suggest that the thermal simulation using a CFD code would be an alternative method to design and develop the thermal control equipment in the financial aspect. -
This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.
-
The authors have reviewed many mathematical thermal mode lings of bipropellant propulsion system in literatures to gather basic data for developing a computer program which analyses the performance of bipropellant propulsion system. In this paper COMS and its propulsion system is briefly introduced for understanding. The set of first order nonlinear differential equations is reviewed and considered as candidate equations for the program development.
-
An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.
-
A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.
-
Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with
$variable-{\gamma}$ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.