Proceedings of the Korean Society of Precision Engineering Conference (한국정밀공학회:학술대회논문집)
Korean Society for Precision Engineering
- Semi Annual
- /
- 2005-8446(pISSN)
Domain
- Machinery > Precision Machines
2000.05a
-
The paper deals with the dynamic response of non-uniform beams subjected to a moving mass. In the dynamic analysis, the effects of inertia force, elastic force, centrifugal force, Coriolis force and self weight due to moving mass are taken into account. Galerkin's mode summation method is applied for the discretized equations of notion. Numerical results for the dynamic response of the non-uniform beam under a moving mass having various magnitudes and velocities are investigated. Experimental results have a good agrement with predictions
-
The Purpose of this study is analysis of kinematic for a modified manipulator and experimental test to certify auto-balancing operation. The test is carried out as follows. First, we solve the inverse kinematics and then do a closed loop control. Second we confirm translation displacement and rotation angle of a manipulator.
-
This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.
-
This hybrid position/force control for the dynamic walking of the biped robot is performed in this paper. After the biped robot was modeled with 14 degrees of freedom of the multibody dynamics, the equations of motion are constructed using velocity transformation technique. Then the inverse dynamic analysis is performed for determining the driving torques and the ground reaction forces. From this analysis, obtains the maximum ground contact force at the moment of contacting which act on the rear of the sole of swing leg and the distribution curve of the ground reaction. Because these maximum force and distribution type acts an important role to the stability of the whole dynamic walking, they are reduced and distributed smoothly by means of the trajectory of the modified ground reaction force. This new trajectory is used to the reference input for more stable dynamic walking of the whole walking region.
-
A control law for a SCARA robot manipulator is designed using recursive torque methods. This scheme uses previous torques and error dynamics to generate torque controls at the present time and adopts relatively simple numerical and control algorithms that can be easily realizable. In order to evaluate the performance and robustness of the suggested control system, the 2-link SCARA robot manipulator is practically implemented using a dSPACE interface. It is found that the recursive controller has a good tracking performance in spite of the presence of payload disturbances.
-
The purpose of robot manipulator control is to make for manipulator take a trace of pre-planned trajectory. In this study, the algorithm of MRAC(Model Reference Adaptive Control) on reference to adaptive control theory was studied. The experiments were performed on 6-DOF robot manipulator with respect to p-d(proportional-differential) controller and adaptive controller. The property of adaptive control was studied and its efficiency proved by being compared to p-d controller.
-
When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with the separation plate, including some experimental works. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics and the dynamic response of a fixed-free beam which has restrained motion at the free end by the separation plates. Results are presented for various magnetic forces and gaps between stops.
-
The conventional actuators with the speed reducer had weakness in supporting the weight of the body and leg itself. To overcome this, a new four bar link mechanism actuated by the ball screw was proposed. The four bar mechanism has higher strength and gear ratio than the conventional actuator to actutate the leg of the biped robot. One leg was designed to have ankle, thigh, and hip joints. The kinematics and dynamics of one leg with four bar link mechanism was analyzed using Euler-Lagrange approach. The dynamics of one leg was expressed in the ball strew frame.
-
By using the information obtained from output of the MR(Magneto Resistive) sensor for an unmanned vehicle system which is used in the Local Position System. We develop an algorithm that decides the distance and directions between the guideline made by magnets and vehicle, and make an unmanned vehicle driving system that is steered by PD controller and MR sensor
-
In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particulary important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, 3-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving 3-axis vibration testing device is developed and the displacement of the 3-axis actuator is separately calibrated by LDT Moreover, the input and output data are displayed in windows of PC controller with real time.
-
This paper presents new cutting force measuring system for milling process. Usually, tool dynamometer is the most appropriate measuring tool in an analysis of cutting mechanism. High price and limited space, however, make it difficult to be in-situ system for controllable milling process. Although an alternative using AC current of servomotor has been suggested, it is unsuitable for cutting force control because of low bandwidth and noise. We suggest new cutting force measuring system, using two load cell placed between moving table and nut of ballscrew, and modelled on the system statically and dynamically. And to verify the accuracy of the proposed system, a series of carefully conducted experiments were carried out. Experiment results show that models are in reasonably good agreement with the experiment data.
-
A new dressing technique with utilizes electrolytic phenomenon for realizing effective mirror surface grindings with metal bonded super-abrasive wheels is called “Electrolytic In-process Dressing Grinding”. This technique enabled metal bonded micro-grain wheels, such as micro-grain cast iron fiber bonded wheels, to be used for mirror surface finish processes effectively. But this technique requires a lot of knowledge and experience to perform. And the condition of dressing is variable according to the time. Therefore adaptation of Monitoring and Control technique is needed.
-
This dissertation is concerned with ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on an precision xy-stage whose lateral motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed in this investigation is capable of providing a repeatability of 50 nanometers with a
$\pm$ 3$\sigma$ uncertainty of 300 nanometers. Thermal disturbance is found the most significant factor that should be precisely controlled for accurate measurement. -
Roundness measurement method using three displacement sensors makes in-process roundness measurement possible on the NC machine because it eliminates the vibration signal and eccentricity signal from measured roundness signal from the workpiece. But if measured signals contain noises, high precision measurement of the roundness isn't possible. In this study, a high precision in-process roundness measurement system is developed, which applies a Kalman filter to the roundness measurement method using three displacement sensors and can be used to measure vibration of the spindle.
-
This paper deals with monitoring of grinding wheel wear in surface grinding process. A laser scanning micrometer is used to measure the circumferential shape as well as the axial shape of grinding wheel. The monitoring system is applied to two kinds of grinding methods: plunge and traverse grinding. Through experiments, it is found that measurement of grinding wheel wear reveals information of roughness of ground surface and the adequate dressing time. In addition, monitoring of grinding wheel wear makes it possible to identify abnormal grinding conditions.
-
Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. Is such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. We will examine the control performance and stability before manufacturing the real apparatus by using MATLAB SIMULINK based or pre-designed controller and system modeling.
-
A kinematic ball bar measuring system can analyze the various errors of a machine tool easil rapidly with only one measurement, But it cannot be used to measure the errors of the equipment the semiconductor manufacturing (e.g. chip mounter, PCB router etc.) not to use a cir interpolation. This paper presents the method to apply a kinematic ball bar measuring system tc machines which use merely a linear interpolation Also, the work of measuring and calibratir various errors of a chip mounter with a kinematic bal1 bar measurement system is accomplished
-
This System is developed for the estimation of the Camera Lens Resolution. Signal data proportional to light intensity is obtained and sampled from the 2D CCD. Based on the measured signal. the MTF charateristcs of a camera lens are measured. We could measure the sagittal and tangential MTF in the on and off-axis at the same time. The automatic measurig methods for optimal image plane, magnification, and best marginal direction of test lens are presented.
-
The propose of study analyze a TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with 3, 5, 7, 9, 11 baffles and 16, 20 tubes. In this investigate measured a variation of the heat exchanger cooling capacity change within each number of baffle and tube number and determined optimal number of baffle. designs for industry applications are optimized using the analysis of test results.
-
Chemical facility system have dangerous elements that can injure the human like an explosion and a fire, gas poisoning by a leakage of the harmful chemical material. In addition to a vibration of the machine occurs the leakage. Therefore, the chemical factory requires for periodic monitoring of the vibration. But, until now, the operator has executed a monitoring of the machine by the senses. So, the diagnostic expert system by which the operator can judge easily and expertly a condition of the machine is developed. This paper describes the structure of diagnostic system and the diagnostic algorithm using fuzzy inference
-
As many industrial systems become more complex, it becomes extremely difficult to diagnose the cause of failures. This paper presents a failure diagnosis approach based on discrete event system theory. In particular, the approach is a hybrid of event-based and state-based ones leading to a simpler failure diagnoser with supervisory control capability. The design procedure is presented along with a pump-valve system as an example.
-
For the failure diagnosis of industrial system like various manufacturing systems, power plants and etc, many failure diagnosis approaches are considered. Here we are focus on the DES approach for failure diagnosis. We treats of failure recovery problem that is euly not mentioned in DES approach. The procedure to design a recoverable diagnoser is presented. And the recoverability, necessary and sufficient condition fur recoverability are defined. Then we make the high-level diagnoser to reduce the state size of recoverable diagnsoer. Finally, a pump-valve system example is presented.
-
Machining performance in hard turning of hardened AISI M2 steel has been studied. Ceramic tools were used in the cutting tests without coolants and workpiece was prepared by heat treatment to increase its hardness up to Rc 60. Cutting state parameters such as cutting forces, temperature, and tool wear were measured in the experiments and effects of tool wear on cutting states were investigated.
-
In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.
-
The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.
-
An aerostatic stage has frictionless behavior, so it has a advantage of investigation into driven mechanism such as ballscrew. In this paper, fur investigating positioning characteristic of ballscrew and feedback device in aerostatic stage, we compare the positioning characteristic between full-closed(laser scale) and semi-closed(encoder) system. Experimental results show that the aerostatic stage has a 10nm micro step response and repeatability is improved up to 1.00
${\mu}{\textrm}{m}$ using laser scale. We confirm the laser scale compensate error motion of ballscrew, so acquire 1.12${\mu}{\textrm}{m}$ positioning accuracy. -
There are many sources of errors in the parallel device. This study investigates the effect of a clearance error at a U-joint on the position and orientation errors of the platform of a new parallel device, cubic parallel manipulator. In this study, the limits of errors can be estimated for given conditions.
-
In this paper, an extended volumetric error model considering backlash in a three-axis machine tool was proposed and utilized for calculating the volumetric error of the machine tool at any position in three-dimensional workspace. Backlashes are interrelated; i.e. the angular backlash affects the straightness errors which then affect the calculated squareness errors. Therefore, a new concept was introduced to define the backlash of squareness errors to incorporate the backlash of squareness error into the volumetric error, and the characteristics of the backlash of squareness error were investigated. The effects of backlash errors were assessed, by experiments, fur 21 geometric errors of a machine tool. The backlash error was shown to be one of the systematic errors of a machine tool. Based on this volumetric error model, a computer-aided volumetric error analysis system was developed for a three-axis machine tool in this paper. Then the volumetric error at an arbitrary position can be obtained, and displayed in a three-dimensional graphic form.
-
Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.
-
Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines
-
This paper is concerned with Accuracy Design of LM Guide System in Machine Tools. Elastic deformation of bearing is calculated by Hertz contact theory and motion error of LM block is analyzed. A new algorithm using block stiffness is proposed fur the analysis of motion accuracy of the table. The best advantage of this algorithm is fast analysis speed because it isn't necessary iteration processes for satisfying equilibrium equation of the table. Motion errors of the table analyzed under artificial form error of rail theoretically and experimentally. Only one of two rails is bent by putting a thickness gauge into horizontal direction. This form error of rail is measured by gap sensor against the other rail. Then, motion errors of the table are predicted by proposed new algorithm theoretically and measured by laser interferometer. Measurements are carried out by changing the preload and thickness. The results show that the table motion errors are reduced from 1/2 to 1/60 times than form error of rail according to its height and width. And the effect of preloading is almost negligible.
-
In order to use a parallel device fur machine tool feed mechanism, it is very important to analyze its stiffness over the workspace. Generally, the stiffness of a rod varies with its length. In this paper, the stiffness of the leg is modeled as a linear function. With the linear stiffness model, the methods that can determine stiffness bounds and max/min stiffness directions are presented utilizing eigenvalues and eigenvectors of the stiffness matrix. The stiffness variation along a tool-path and stiffness mapping over a workspace are presented with cubic-shaped parallel device which is originally designed for machine tool feed mechanism.
-
Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machines. This main error components are analyzed by three-dimensional helical ball bar test. By substituting result of helical ball bar test fer simplified model, we could find that obtained error components are closed to real error components.
-
A research on the AFC(Auto Feedrate Control) by a fuzzy controller using a tool dynamometer and motor currents was conducted. For simulations, cutting dynamics of end-milling process was modeled by geometric relationship between tool and work-piece. The fuzzy logic controller was employed to track the desired cutting force and showed good performance in simulations and several experiments. The spindle motor currents was modeled to estimate cutting force and successfully used for the AFC.
-
Burr makes troubles on manufacturing process due to of deburring cost, quality of products and automation. This paper described the results of experimental study on the influence of the cutting parameters on the formation of exit burrs in face milling. Using the results of experimental study, we classified the burr type and developed data bases to predict burr formation result. This program will be used to predict burr type and geometry at a specified location. Simulation results on deformation strain and temperature are also available. Also algorithm which calculate the exit angle is proposed.
-
This paper presents a prediction of tool deflection and resulting machining error fur sculptured surface productions in the ball-end milling process. Due to the different materials and the dimensions of the tool holder and cutter, a cantilever hem model with three uniform sections is proposed fur the tool deflection model. The ability of this model has been verified by a machining experiment. In this study, cutting force and machining error are investigated. This paper provides the prediction of machining error for sculptured surface to improve machining quality for industrial application.
-
This paper presented a new model of NC verification in ball end milling. The model verifies the over cut the under cut and the surface roughness using NC file generated from CAM and cutting condition. The model uses Z-map model to verify workpiece. In this paper, the model used the velocities of x, y and z direction and obtained a center point of a ball end mill for modeling Z-map of workpiece. To investigate the performance of the model simulation study was carried out. As the results, the model gave geometry accuracy of workpiece, the surface roughness and the chip loads in finish cutting that can predict tool chipping.
-
Once the Chip has developed a mixed mode of side-curl and up-curl, it would generally curl to strike the too] flank. The development of the bending stresses and shear in the chip would ultimately lead to chip failure. This paper attacks this problem from a mechanics-based approach. by treating the chip as a 3-D elastic curved beam, and applying appropriate constraints and forces. The expressions for bending. shear and direct stresses are developed through an energy-based criterion. The location of the maximum stresses is also identified and explained for simulated test conditions.
-
The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire
-
From the experimental study of W-EDM for alloyed steel, the characteristics such as Hand Drum Form and surface roughness have been observed and evaluated for various conditions. In square hole, the increase of If as to made condition the calculate high value of surface roughness. Also compare dimensionless square hole with circle hole' graph. In circle hole, if a value of surface roughness IP 6 in a side of circle it show a 0.4
${\mu}{\textrm}{m}$ and in IP 8, 0.6${\mu}{\textrm}{m}$ , in IP 10, 0.7${\mu}{\textrm}{m}$ , in IP 12. 0.8${\mu}{\textrm}{m}$ higher than before. This figure show the surface roughness is higher than before, because a table move in either X-axis or Y-axis in square hole, on the contrary, in circle there table move in X-axis and Y-axis at the same time. hand drum form getting small when wire tension increase 1000gf to 1500gf, at the same working conditions. the smaller of off time, the mailer of hand drum form in same condition and same wire tension. but if you compare square hole with circle hole' graph hand drum form displayed in maintained term of working condision, on the contrary, in case of square hole variation of hand drum form is more increase than a grow of IP -
The removal of contaminants of silicon wafers has been investigated by various methods. Laser cleaning is the new dry cleaning technique to replace wafer wet cleaning in the near future. A dry laser cleaning uses inert gas jet to remove contaminant particles lifted off by the action of a KrF excimer laser. A laser cleaning model is developed to simulate the cleaning process and analyze the influence of contaminant particles and experimental parameters on laser cleaning efficiency. The model demonstrates that various types of submicrometer-sized particles from the front sides of silicon wafer can be efficiently removed by laser cleaning. The laser cleaning is explained by a particle adhesion model. including van der Waals forces and hydrogen bonding, and a particle removal model involving rapid thermal expansion of the substrate due to the thermoelastic effect. In addition, the experiment of wafer laser cleaning using KrF excimer laser was conducted to remove various contaminant particles.
-
Rotary shearing using of rotating and locally shear force has been studied. It is possible to be obtained in any case for requested blank diameters. In this paper, different local forming zones, that are clearances between upper roller and vertically taped low roller, were investigated. Required shearing force is calculated by undecided coefficient method for clearances and strokes of upper roller. Rotary shearing is completed undergoing some processes composed of pressing steps and standing steps. The reason for using these processes is to avoid jamming or tearing of blank by means of upper roller during shearing.
-
The accumulated know-how and trial-and-error procedures are known as the best ways to determine blank shape and dimensions. One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of products is calculated by mathematical or 3-D modeling methods. A blank design system is constructed for elliptical deep drawing products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. This system consists of input geometry recognition module, 3-D modeling module and blank design module, respectively. Blank dimension of three types is determined by the same area, which was acquired in 3-D modeling module. The suitability of this system is verified by applying to a real deep drawing product.
-
In order to reduce lead-time and cost, recently the technology of Rapid Prototyping and Manufacturing (PR/M) has been used widely. So various RP/M methods have been developed and these systems commercialized several years ago. But we have carried out rapid product, such as sphere, by the milling process instead of RP system. in the case of sphere with three-dimensional shape. the machining method using conventional milling machine has resulted in some troubles because of its deformation and lack of stiffness which is due to usual work piece set up method. In this paper, the feasibility of milling process which is divided into two steps such as the-upper-and-1ower-face milling process using supporting material were investigated and suggested.
-
The Rapid Prototyping and Tooling technology has been developed. However, most commercial ones currently use resins or waxes as the raw materials. These days. the direct metal deposition methods are researched as a true rapid prototyping and tooling technology. A fundamental study on rapid prototyping and tooling with wire welding technology using
$CO_2$ laser radiation was carried out in this paper. The main focus is to develop a simple commercial rapid prototyping and tooling system with the exiting laser welding technology. The process is investigated as a function of laser parameters and process variables. Basic parts were fabricated as out-put and their microstructure, hardness and tensile strength are examined for the reliability. In addition, Its advantages and disadvantages are discussed as a rapid prototyping and tooling system. -
A novel process is newly developed for building RP(Rapid Prototyping) parts using a sheet lamination technique. The build process of existing sheet lamination type RP machines consists of the following steps : feeding, lamination and cutting. In this process, the laminated part of an object is often scratched by a cutter or damaged by a laser beam due to the cutting operation preceded by lamination, In addition, decubing of the unused portion from the laminated block is difficult. In the new process, cutting operation is performed before lamination. The cutting operation takes place while a paper sheet is firmly attached on the plate using electrostatic force. Then liquid glue is applied to the calculated region of the given contour for lamination. The process aims to manufacture a $2k RP machine, what we call the Freeform Mater I, that can use A4 or latter-size used papers. A prototype machine that demonstrates the design concept is built and further research issues are discussed.
-
RP techniques have inherent disadvantages caused by their working principles: stair-stepped surface of parts due to layer-by-layer stacking of layers, low build speed caused by line-by-line solidification to finish one layer, and post processing to improve surface finish, etc. The objective of this study is to propose a new RP technique, variable deposition manufacturing (VDM), which can make up for the disadvantages of the existing RP techniques, and to develop an apparatus to implement the technique. The proposed process can greatly reduce the building time and improve the surface finish of parts generated. The experiments are carried out to obtain the range of temperature of molten material to maintain its fluidity and to investigate the effect of gas cooling on the preservation of the slopes. Based on the results, some simple shapes such as a line-shape. an S-shape, and a circle-shape were fabricated from Ethylene Vinyl Acetatecopolymer (EVA). In order to examine the applicability of VDM to more general shapes, a tensile specimen and a yo-yo shape were manufactured by the proposed RP method using EVA material as the first trial approach. The present basic study has shown the possibility of a practicable utilization of the proposed VDM process to prototyping of a general three-dimensional shape.
-
Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.
-
This paper aimes to clarify the effects of tool geometry on the tool life in machining of STS 304. The main conclusions obtained were as follows. The lift of TiN coated cermet tool was the longest, exhibiting shorter life in the order of P2O, cermet, TiCN coated carbide and TiAIN coated carbide tools. S-type tool showed the best performance of all tools used in this tests due to preventing the boundary wear of the side cutting edge.
-
Increasing demands in productivity are propelling the development of new manufacturing methods like hard machining, high speed cutting (HSC) or machining of difficult to machine materials. In these processes the toois are subjected to very severe mechanical, tribological and thermal loads. They fail prematurely by abrasion, cratering, edge breakage and cold welding. The performance of such tools will be enhanced by better and more wear resistant coatings. The development of these new coatings shows a clear trend towards complex multi-component and multi-layer configurations. TiAIN multilayer coating belongs to these coatings for the new cutting tool generation. This paper tries to explain the benefits of the new coatings. TiAIN multilayer coating offers the following advantages: reduction of manufacturing costs. boost productivity, and lower coolant procurement, conditioning and disposal costs.
-
The magnetic assisted finishing thought to be one of the potential methods for the automatic polishing process. In this study, magnetic assisted finishing process was experimentally attempted to polish the intrnal surface of the cylindrical tube. The newly developed magnetic tool was used, and its polishing performance exmined. From the experimental results, it is found that i ) the newly developed tool is suitable for intrnal surface finishing of the tube. ii ) the surface roughness of 0.9~1
${\mu}{\textrm}{m}$ Rmax before polishing is improved to the value of 0.2${\mu}{\textrm}{m}$ Rmax in the finishing experiment of stainless steel STS3602L tube in 6 minutes finishing time. -
The concern of environmental problems by using coolant required the recycling technologies of used coolant and development of environmental-firiendly coolant Some methods have been developing. Those are the dry grinding with compressed cold air and grinding with misted coolant. The farmer is effective in the cooling effect, but has not the performance of lubrication. Otherwise, the latter can satisfy both of them and also decrease the environmental pollution. This paper tried to analyze the cooling effect and surface integral of coolant, compressed cold air, mist through measuring the temperature of grind point and grinding force. Especially, the grinding method with misted coolant according to parameters was done. So, the finding method with misted coolant proved to be effective as one of methods to decrease the environmental pollution.
-
This paper deals wi th the establishment of the method of non-contact surface roughness measurement by developed system. One of the most Important factor of determinating quality of a produced manufacture is surface roughness The tendency of manufacturing method is changing from small amount manufactures / high-volume production to large amount manufactures / low volume production, and the study of reducing time for surface roughness measurement has been actively investigated The non-contact surface roughness method by using laser which is different from contact method has been only used to the polished surface, so new surface roughness measurement method was adopted by virtue of Fraunhofer diffraction in the periodic surface for on-the-machine. in this paper, we establish the method of non-contact surface roughness measurement which can reduce measuring time in the periodic surface
-
The product of stereolithography is consist of gathering the single strand. Therefore the accuracy of the shape is related to the linear shrinkage of the single strand. The resin temperature change affect on curing properties. This article will propose the interaction between material temperature and shape accuracy by resin temperature control. The main concern of this article is related to the improvement of end product's shape accuracy by the persuit for the filles curing criterion.
-
Injection molding process was taken to manufacture DC motor case that surrounds DC motor used as automobile parts. Up to now, DC motor case has been made by the deep drawing process or bending process of metal materials. Simulations of filling, packing and cooling processes were done by CAE tool like Moldflow software. Optimal delivery system was decided from the analysis of flow balance, and packing and cooling analyses were performed by using the design of experiment to minimize the volumetric shrinkage of molded part and the temperature difference between mold and part.
-
Recently the styrofoam has been used fur material of press die pattern. The object of this research is to develope an automated laser system for manufacture of press die pattern which depends chiefly on handwork during its process. After converting 3-D CAD model into cross-sectional shape information, the unnecessary part of the section is vapored away by laser. The depth and width of cut are mainly under the control of laser power and beam feed rate. The optimum manufacturing conditions are obtained by preliminary experiments. It is necessary fur precise styrofoam pattern manufacturing to develope laser system which has sufficient motion accuracy and program or beam path generation and automatic control of this system.
-
The characteristics of wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of tungsten carbide in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension, the gap of deflection was decreased after thickness 60mm and discharge time of 6
$\mu\textrm{s}$ due to the changing from fundamental mode to vibration mode. The deflection is the smallest at the water specific resistivity of 7.5 kΩ ㆍcm. The deflection is found to be decreased as increasing dwell time, and the result is due to the vibration of the pressure and the amount of the dielectric. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, was observed for rough wire-cutting EDM of STD-11. This phenomena is found to be decreased as the number of EDM is increased. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased. -
As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.
-
This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge fur the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing automatically generated by piercing with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer of electronic products to be more efficient in this field.
-
The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.
-
Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method of producing parts than the other sheet metal forming process such as stamping or deep drawing. It is a point deformation process where a metal disc. cylinderical workpiece. or preform in contact with a rotating chuck is plastically deformed by axial or axial-radial Motions of a tool or roller. in this study the variation of spring back with respect to various forming roller corner radius(Rr) and angle of roller holder(
$\alpha$ ) is investigated. Good as a result will help to get more precise shape by control of spring back. -
It is essential to reduce stiction between the slider and the disk for super-smooth media such as glass disk for high density recording. We developed a stiction-reduced slider by fabricating mechanical bumps on the air bearing surface of the slider by indentation technique. This paper presents a possibility and concept of Stiction-Free-Slider which can operate on the data zone of a magnetic disk. The slider hat many bumps and their heights are in the tens of nm range. The SFS shows good performance on the data zone. Moreover, little wear of the bumps was observed when the preload was small.
-
세라믹 재료는 높은 강도 및 결도를 갖는 기계적 성질로 인하여 연삭가공에는 다이아몬드를 지립으로 하는 초지립 숫돌이 사용된다. 다이아몬드는 일반지립에 비하여 내마모성이 월등하게 높다는 사실로부터 숫돌의 트루잉 및 드레싱 작업이 극히 곤란한 것은 주지의 사실이다.(중략)
-
최근에 초정밀 제조업 분야에서 볼의 이용에 관한 연구가 급속히 진행되고 있으며, 일부 반도체 분야에서는 BGA(Ball Grid Array)와 같은 용도로 이용되기도 하며, 볼 자체를 반도체 칩으로 응용하려는 시도가 제안되어 있다. 이러한 적용분야들에서 볼의 진구도, 정밀도 및 청정도 등을 만족시킬 수 있는 가공기술이 선결되어야 한다. 본 연구에서는 초정밀 볼의 가공기술 개발을 목적으로 하여 유리 볼을 대상으로 하고
$H_2O$ 와 CeO$_2$ 를 혼합한 연마재를 사용하여 부상회전에 의한 비접촉식 연마방법을 제안하고 가공특성을 조사하였다 연구 결과로서, 비 접촉식 볼의 가공에서는 가공에 앞서$H_2O$ 와의 전처리 과정을 거침으로 해서 가공속도를 촉진시킬 수 있다는 사실이 확인되었다. -
Chemical Mechanical Polishing(CMP) has been accepted as one of the essential processes for VLSI fabrication. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. This defect makes removal rate decrease with a number of polished wafer and the desired within-chip planarity, within wafer and wafer-to-wafer nonuniformity are unable to be achieved. So, pad conditioning is essential to overcome this defect. The eletroplated diamond grit disk is used as the conventional conditioner, And alumina long fiber, the .jet power of high pressure deionized water and vacuum compression are under investigation. But, these methods have the defects like scratches on wafer surface by out of diamond grits, subsidences of pad pores by over-conditioning, and the limits of conditioning effect. To improve these conditioning methods. this paper presents the Characteristics of Ultrasonic conditioning aided by cavitation.
-
Application of ceramics, carbide, ferrite has grown considerably due to significant improvement in their mechanical properties such as light weight chemical stability super wear resistance and electronical. Despite these character, the use of hi-tech material has not increased because of poor machinability. The method of using of metal bond wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. This method need wheel for electrolytic dressing, power supply and electrolyte. But development of wheel for electrolytic dressing is the most need. The aim of this study is development of wheel for electrolytic and appraisement of CIB-diamond lapping wheel
-
The surface grinding of STD-11 was attempted on the machining center. Grinding experiments were performed at the various grinding conditions and the grinding force, machining error, grinding ratio, and surface roughness were measured. The experimental results indicate that the grinding ratio decreases as the table speed and depth of cut increase. The surface roughness of ground surface was not affected by the change of depth of cut. The surface roughness values obtained on the experiments were 0.02 ~ 0.03
${\mu}{\textrm}{m}$ which are fairy good and acceptable for ground surface. -
The finishing process for die is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But die automatic finishing machine has the problems such as low supply rate and high machine price. In this paper 3-axis machine was applied to the die finishing. And to improve form accuracy of die finishing path was regenerated. The finishing path considered tilting of finishing tool. and variation of machining force with contacting point between finishing and workpiece.
-
This investigation reports the grinding characteristics of quartz. Grinding experiments were performed at various grinding conditions including wheel mesh, table speed and depth of cut. The grinding forces and specific grinding energies were measured to compare the grindability of quartz with those of structural ceramics such as A1
$_2$ O$_3$ , SiC, Si$_3$ N$_4$ and ZrO$_2$ . Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. The chip formation energy of quartz was about 6J/㎣, which is quite smaller than those of structural ceramics. Although plastic flows are occured in Si$_3$ N$_4$ and ZrO$_2$ , micro/macro cracks are occured in ground surface of quartz like in A1$_2$ O$_3$ and SiC. -
Pre-coated sheet materials are a cost-effective and environmentally attractive alternative to conventional sheet materials coated after forming. At present but the high scratch sensitivity of coating used for pre-coated metal sheet is a major limitation to use of these materials. Because of high scratch sensitivity, products made by pre-coated metal sheet are not formed by conventional design method. This study has been performed to investigate scratch characteristic of non-vinyl pre-coated metal (PCM) sheet. Using the simple U-bending test equipment, three non-vinyls PCM's were tested. This paper provides the results of bending tests showing the influence of sheet surface texture, tool material and process conditions. It was found that the influence of punch, die clearance and tool material had an effect upon the scratch characteristic.
-
Recently high speed machining is being studied actively to reduce machining time and to improve machining precision. To perform efficient high speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force, tool wear and surface roughness. In this study. the cutting force and tool wear and surface roughness are investigated in case of various cutting conditions for hardened die steel.
-
The machinability of material was evaluated using high speed steel drill on hot-rolled high strength steel. Cutting resistance and tool wear were investigated by drilling experimentation. When the steel-board specimens were drilled in industrial condition, the relationship between average of thrust and cutting resistance was random because of slip of chuck and strain of workpiece. The primary objective of this study is to develop the strategy of analysis that can detect drilling states in industrial condition and such strategy is programmed with visual C++. The developed program can analyze thrust of initial rising zone. The result is obtained that thrust of rising zone is closely related to tool wear in despite of industrial condition.
-
This paper describes the machining characteristics of the MoSi
$_2$ -based composites by electric discharge drilling with various tubular electrodes. MoSi$_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to facilitate the removal of machining debris from the hole. Various metal-coated tubular electrodes of which core are copper and brass are used to know the effect of coating material on machinability of ED drilling. -
In this paper, the test of machinability according to the cutting positions when the ball end milling of hemispheric workpiece is carried out to find the optimum cutting position of free form surface die. Tool runout, cutting force. and chip form are measured. The results show that the optimum cutting condition to get the constant feed per tooth is the inclined angle of 40 degree of workpiece.
-
본 연구에서는 초미세 형상부품의 제작기술로서 방전가공기술의 활용을 전제로 하여, WEDG(Wire electric discharge grinding: WEDG)가공에 있어서 가공액의 공급방식을 포함한 공급환경이 표면상태에 미치는 영향에 관하여 조사하였다. WEDG법을 이용한 형상가공에 있어서는 단위 방전 펄스당의 에너지를 극소화하여 제거단위를 미세화함으로서 가공정밀도(가공표면 및 가공형상의 정밀도)를 향상시키는 것이 가능하다.(중략)
-
In this paper, the theoretical tool displacement and surface roughness are analyzed based on the tool locus of a 2-dimensional tool vibrator. At first, the effects assuming no structural deformation of such variables as frequency, amplitude and phase difference that determine tool loci are simulated. The results show that larger amplitude and/or higher frequency makes better surface. However, a real tool vibrator has the structural deformation, much or less, depending on the excitation frequency. Applying FEM analysis to the deformation of a designed 2D tool vibrator according to the excitation, it has been proved that in this case the displacement is 5
${\mu}{\textrm}{m}$ at 1KHz and almost 0 at 20KHz even under the same excitation amplitude. -
In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel. 82% of the total energy is consumed in the shear process and the balance is consumed in the friction process.
-
In this study, a modified model for prediction of cutting force components in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease.
-
The term ‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry fur the machining of light alloys, notably aluminium. In recent you, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter fur end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-walled part of light alloy like Al(thinkness about 0.1mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.
-
One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path
-
Generally, the machining accuracy in ball end milling directly depends on the rotational accuracy affected by the spindle speeds. The effects of spindle speeds for rotational accuracy in the high speed regions are more dominant than those in the low speed regions. This paper will investigate effects that the Increased speed affects on the rotational error according to the increase of a rotational speed and machining characteristics of the high speed ball-end milling in various rotational speeds and on various materials by using the high speed air-bearing spindle.
-
Recently, there are lots of applications in machining dies using CAD/CAM systems. which results in reduction of machining time and rising of machining efficiency applying high speed machining and high quality machining. Investigation of machinability is necessary in order to apply high speed machining. In machining complicate 3D model such as connecting rod die. the need of high speed machine and coated tool is requested recently in this field. This paper introduce the database of high speed machining to improve machining efficiency of connecting rod die.
-
Experimental study was conducted for finding the characteristics of machining precision according to the change of feedrate when ball endmilling of semisphere shape. The values of tool deflection and cutting force were measured simultaneously by the systems of eddy-current sensor and dynamometer. The machining precision was analyzed by roundness values, which were deeply relating with tool deflection and forces. the roundness was decreased in down-milling than in up-milling for each feedrate. As the cutting edge is moved to radius direction on the tool path, the tool deflection and the cutting force were seemed to be decreased. As the tool path was moved downward, the values of roundness, cutting force and tool deflection were obtained better ones. When compared the values of roundness, cutting force and tool deflection for different feedrate, the best machining accuracy was obtained at feed rate of 90mm/min in down-milling.
-
Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.
-
This study was carried out to examine the influences of the cutting fluid to the environment of the small and he medium industries in the Kumi complex. The result of this study shows that the cutting fluid includes a few of hazardrous materials such as phenol and benzen. Therefore a new cutting technology without cutting fluid should be strongly recommended in the nearest future.
-
Sculptured surface machining plays a vital role in the process of bring new products to the market place. A great variety of products rely on this technology for the production of the dies and moulds used in manufacturing. And, the use of CNC machines and CAD/CAM system has become a vital parts of product development process. The propose of this study is to investigate the effect of cutting parameters on the machinability such as surface roughness and cusp generated in the machining of sculptured surface on a three-axis CNC machining center using the CAD/CAM system. Experimental result showed that: In step down cutting, as the inclined angle of surface became smaller, the cusp height appeared higher. On the other hand, in step over cutting, as the inclined angle of surface became larger, the cusp height appeared higher. In the point of precision machining, step over cutting was more effective. For the minimization of cusp height, step down cutting was effective in larger inclined surface, but step over cutting in smaller inclined surface.
-
This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.
-
Nowadays, Internet is so popular that we can easily access the remote site to search information and to communicate remote site and users. People who want to make a collaborate working environment can use JAVA, CORBA, and other internet programming tools like a Perl/XML. The mechanist are try to make the environment fur collaboration within design/manufacturing, simulation, remote sensing through TCP/IP And many industries and research institutions are working towards the agile manufacturing. This paper describes an internet-based real-Time remote monitoring system. The system consists of a hardware setup and a software interface. The hardware setup consists of a machine and its data acquisition hardware, while the software interface incorporates the data acquisition software, the server program, and the client program. The server program acts as the main interface between the data acquisition system and the internet technology. The client program is to be distributed to the remote users who want to monitor the machining status. The system has been demonstrated and verified for an industrial High-Speed Machine (HSM) especially measuring cutting force and acoustic emission. To share the signal, we make the WWW server and display its value. The system has been found to be highly efficient, reliable and accurate.
-
In this study, the micro shaft was fabricated by high speed etching process. The integration of the kinetic energy of circumference and the effect of etching takes less time to fabricate the micro shaft than any other conventional methods. First, the end part of the rod(SKD11) was dipped in chemical solution(FeCl
$_3$ ) and the rod rotated at high speed(3500-10000rpm). Experimental setup was simply composed of high speed motor. chemical solution and$\Phi$ 1 mm rod. The main factors of diameter control are chemical concentration, reaction time and rpm. has a result. the diameter of the dipped rod was decreased by 200${\mu}{\textrm}{m}$ by high speed rotation and its shape and surface was good. From this experiment, we found the possibility to manufacture micro shaft without very expensive equipment. -
Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2
$^{\circ}$ . Maximum Radius of curvature of bottom was 7.75${\mu}{\textrm}{m}$ . This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future. -
In this paper, a controller design for brushless linear motor is proposed. The designed controller is mainly composed of speed and current controller, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented using by 32-bit DSP(TMS320C31), a high-integrated logic device(EPM7128), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for the brushless linear motor.
-
A brushless linear motor is suitalbe fur a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive farce and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.
-
Direct drive linear motors have large potential for use as high speed machine tool feed units since they can increase machining rates and improve servo accuracy by eliminating gear related machining problems. So, in this paper, characteristic of 2-axis linear motor feed unit are studied and control gain are adjusted considering positioning, velocity, acceleration and static stiffness. We confirm linear motor feed unit are affected value of control gain sensitively, because drive directly. From the experiment, this feed unit has l
${\mu}{\textrm}{m}$ micro step resolution, 5.7${\mu}{\textrm}{m}$ positioning accuracy and under 60${\mu}{\textrm}{m}$ circularity. -
Perpendicular guideway mechanism has a different behavior with horizontal guideway mechanism due to the slider weight. So, to decrease its weight effect, counter balances such as weight type and hydraulic cylinder type are used. But it can also make another motion behavior by weight rate of slider and counter balance, its connected position. Therefore, it is necessary to find design parameters and analyze their effect. This paper dealt with the optimal design of perpendicular guideway mechanism. For analysis, the theoretic model as same as real machine tool and sib plate to adjust the clearance was used. Rotational angle and displacement of slider, pressure distribution, friction distribution were calculated. Stick slip, intermittent motion of slider according to friction change was adapted to the perpendicular guideway mechanism.
-
In modern manufacturing industry such as aerospace, vehicle and die/mold industry, the high hardness malarial which is remarkable in aspects of durability is effectively used. The high-speed and precision machining technology has been applied in these fields. In this study, efficient sensors in high-speed machining by observing similar tendency through comparing cutting force with AE signal, gap sensor signal and accelerometer signal are selected, and machinability of high-speed machining is experimentally evaluated. We performed a basic research for sensing system construction to monitor a machine tool and machining condition.
-
Recently, reliability engineering is regarded as the major field for aerospace and electronics, semiconductor related industry to improve safety and life cycle. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability In this case, reliability prediction has also important roll from design procedure to manufacturing and assembly process. Accordingly in this study, reliability evaluation system has been developed for prevention trouble. quality and life cycle improvement extremely for advanced mother machinary.
-
In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.
-
As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.
-
Internet service has widely used in office automation such as, manufacturing management purchase, and material resource. Nowadays, factory automation and shop floor control system including CAD/CAM department need a web based monitoring and diagnosis to achieve global collaboration and tole-service. This raper deal with design of web based remote monitoring and diagnosis system which concerned with open architecture controller for machine tool.
-
In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.
-
In this study, a structural characteristics analysis system for motor-integrated high-speed spindle systems, “SpindleX”, is developed based on the Timoshenko theory and the multi-layered finite element method. Since “SpindleX” has the various analysis modules related to static deflection analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically and quantitatively the design and evaluation processes of spindle system under the windows GUI environment. Also, to enhance the user-friendliness, “SpindleX” possesses the various additional functions such as the DXF file interface for auto-importing the shape and geometric data of spindle system from the DXF file, the bearing database for auto-importing the mechanical properties and geometric data of bearing by the bearing number, and the graphical visualization for certificating the imported and analysed data of spindle system.
-
The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.
-
In this paper, multiphase dynamic optimization of machine structure is presented. The final goal is to obtain ( i ) light weight, and ( ii ) rigidity statically and dynamically. The entire optimization process is carried out in two steps. In the first step, multiple optimization problem with two objective functions is treated using Pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second step, maximum receptance is minimized using genetic algorithm. The method is applied to a simplified milling machine.
-
Increasing demands on precision machining with computerized numerical control (CNC) machines have necessitated that the tool to move not only position error as small as possible, but also with smoothly varying feedrates in space. This paper presents a new high precision interpolation algorithm for 3-dimensional (3D) Non-Uniform Rational B-Spline (NURBS) curve in the reference-pulse CNC technique. Based on the minimum path error strategy, real-time NURBS interpolator was developed in software and this was implemented with a PC-NC milling machine. The several experimental results have shown that the proposed NURBS interpolator is useful for the high precision machining of complex shapes. It is expected that this algorithm can be applied to the CNC machines for the machining of 3D free-form surfaces.
-
This research will deal with Innovative manufacturing technology for milli-structure manufacturing technology which is located betweon the traditional manufacturing technology for macro-sized structure and the recently emerging manufacturing technology for micro-scaled structure such as MEMS. There are four fields in this research, which are micro-sheet metal forming technology, micro-bulk forming technology micro-molding technology and micro die making technology. As a project for new-technology in next generation, this research will be carried out through three terms and each term and be composed of three years.
-
By combination of X-ray lithography, electroplating and molding process, various microstructures have been produced. Specially, the alignment grooves for multi-fibers with submicron accuracy have been produced. This paper described a fabrication process of LICA molds and micro molding technique by using LIGA molds. The accuracy of the fabricated LIGA molds was less than 0.4
${\mu}{\textrm}{m}$ . The injection molded alignment grooves were very precise and had me surface roughness so that they could be successfully applicable to optical systems. -
As the progress of new industrial products or parts technology, the precise and fine machining technologies are needed more and more. Micro fabrication technology of these products are usally consisted of mechanical machining or MEMS technology. Direct machining by mechanical method is not applicable to mass production. MEMS technology also has several problems such as low mechanical strength, bad surface roughness and difficulty of 3 dimensional machining. In this study, we introduce several micro fabrication technology to make micro molds and dies and our project to develop these machining technology.
-
We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the
$O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2$\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5$\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.