Arresters are deteriorated by overvoltages or impulse currents, and the resistive leakage current of arresters increases as the deterioration of the arrester progresses, showing an increase in the 3$^{rd}$ harmonic component of the leakage current. In this reason, arrester diagnostic techniques based on the 3$^{rd}$ harmonic leakage current as a reference parameter of deterioration are widely used. The technique, however, includes an error due to the harmonics of power system voltage. Therefore, the influence of the harmonics on arrester diagnostics should be considered. In this paper, we designed a PSpice ZnO arrester model to simulate the influence of the voltage harmonics described above. A pure sinusoidal voltage and its the 3r harmonic voltage were applied to the model, and the leakage current components were analyzed. From the simulation results, it is confirmed that the peak value of resistive leakage current depends not only on the phase of the 3$^{rd}$ harmonic voltage but also on the magnitude of it. Consequently, the errors caused 1)y the harmonic voltage could be minimized by correcting the magnitude of leakage current upon analyzing the harmonics.cs.