Diamond thin films have been deposited on the silicon substrate by inductively coupled radio frequency plasma enhanced chemical vapor deposition system. The morphological features of thin films depending on methane concentration and deposition time have been studied by scanning electron microscopy and Raman spectroscopy. The diamond particles deposited uniformly on silicon substrate($10{\times}10[mm^2]$) at the pressure of 1[torr], a methane concentration of 1[%], a hydrogen flow rate of 60[sccm], a substrate temperature of $840\{sim}870[^{\circ}C]$, an input power of 1[kw], and a deposition time of 1[hour]. With increasing deposition time, the diamond particles grew, and than about 3 hours have passed, the graphitic phase carbon thin film with "cauliflower-like" morphology deposited on the diamond thin films.