• Title/Summary/Keyword: time-to-digital converter (TDC)

Search Result 31, Processing Time 0.023 seconds

Temperature Stable Time-to-Digital Converter (온도변화에 안정한 시간-디지털 변환 회로)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.799-804
    • /
    • 2012
  • To converter time information to digital information Time-to-Digital Converter(TDC) is designed by using analog delay elements. To obtain the temperature stable characteristics the circuit is designed and the operation of the designed circuit is confirmed by HSPICE. The characteristics variation of the designed delay element with temperature is from -0.18% to 0.126% compared to room temperature characteristics when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. Time difference is from -0.18% to 0.12% compared to room temperature characteristic when the temperature is varied from $-20^{\circ}C$ tp $70^{\circ}C$. The time difference is simulated when the digital output is 15. However the time difference is from -1.09% to 1.28% in the TDC using temperature non-stable analog delay elements.

Time-to-Digital Converter Implemented in Field-Programmable Gate Array using a Multiphase Clock and Double State Measurements (Field Programmable Gate Array 기반 다중 클럭과 이중 상태 측정을 이용한 시간-디지털 변환기)

  • Jung, Hyun-Chul;Lim, Hansang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.156-164
    • /
    • 2014
  • In a delay line type of a time-to-digital converter implemented in Field Programmable Gate Array, the timing accuracy decreases for a longer carry chain. In this paper, we propose a structure that has a multi-phase clock and a state machine to check metastability; this would reduce the required length of the carry chain with the same time resolution. To reduce the errors caused by the time difference in the four delay lines associated with a four-phase clock, the proposed TDC generates a single input pulse from four phase clocks and uses a single delay line. Moreover, the state machine is designed to find the phase clock that is used to generate the single input pulse and determine the metastable state without a synchronizer. With the measurement range of 1 ms, the measured resolution was 22 ps, and the non-linearity was 25 ps.

A 12 mW ADPLL Based G/FSK Transmitter for Smart Utility Network in 0.18 ㎛ CMOS

  • Park, Hyung-Gu;Kim, Hongjin;Lee, Dong-Soo;Yu, Chang-Zhi;Ku, Hyunchul;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.272-281
    • /
    • 2013
  • This paper presents low power frequency shift keying (FSK) transmitter using all digital PLL (ADPLL) for smart utility network (SUN). In order to operate at low-power and to integrate a small die area, the ADPLL is adopted in transmitter. The phase noise of the ADPLL is improved by using a fine resolution time to digital converter (TDC) and digitally controlled oscillator (DCO). The FSK transmitter is implemented in $0.18{\mu}m$ 1-poly 6-metal CMOS technology. The die area of the transmitter including ADPLL is $3.5mm^2$. The power consumption of the ADPLL is 12.43 mW. And, the power consumptions of the transmitter are 35.36 mW and 65.57 mW when the output power levels are -1.6 dBm and +12 dBm, respectively. Both of them are supplied by 1.8 V voltage source. The frequency resolution of the TDC is 2.7 ps. The effective DCO frequency resolution with the differential MOS varactor and sigma-delta modulator is 2.5 Hz. The phase noise of the ADPLL output at 1.8 GHz is -121.17 dBc/Hz with a 1 MHz offset.

Design of Digital PLL using Binary Phase-Frequency Detector and Counter for Digital Phase Detection (이진 위상-주파수 검출기와 카운터를 이용한 디지털 위상 고정 루프 회로 설계)

  • Han, Jong-Seok;Yoon, Kwan;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • In this paper, a digital phase-locked loop(Digital-PLL) circuit with a new phase-to-digital converter(P2D) is described. The proposed digital PLL is composed a P2D, a digital loop filter(DLF), and a digitally controlled oscillator(DCO). The P2D generates a digital code for a phase error. The proposed P2D used a binary phase frequency detector(BPFD) and a counter in place of a time-to-digital converter(TDC) for simple structure, compact area and low power consumption. The proposed circuit was designed with CMOS 0.18um process. The simulation shows the circuit operates with the 1.0 to 2.2GHz with the power consumption of 16.2mW at 1.65GHz and the circuit occupies the chip area of $0.096mm^2$.

Design of Phase Locked Loop (PLL) based Time to Digital Converter for LiDAR System with Measurement of Absolute Time Difference (LiDAR 시스템용 절대시간 측정을 위한 위상고정루프 기반 시간 디지털 변환기 설계)

  • Yoo, Sang-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.677-684
    • /
    • 2021
  • This paper presents a time-to-digital converter for measuring absolute time differences. The time-to-digital converter was designed and fabricated in 0.18-um CMOS technology and it can be applied to Light Detection and Ranging system which requires long time-cover range and 50ps time resolution. Since designed time-to-digital converter adopted the reference clock of 625MHz generated by phase locked loop, it could have absolute time resolution of 50ps after automatic calibration and its cover range was over than 800ns. The time-to-digital converter adopted a counter and chain delay lines for time measurement. The counter is used for coarse time measurement and chain delay lines are used for fine time measurement. From many times experiments, fabricated time-to-digital converter has 50 ps time resolution with maximum INL of 0.8 LSB and its power consumption is about 70 mW.

On-Chip Digital Temperature Sensor Using Delay Buffers Based the Pulse Shrinking Method (펄스 수축방식 기반의 지연버퍼를 이용한 온-칩 디지털 온도센서)

  • Yun, Seung-Chan;Kim, Tae-Un;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.681-686
    • /
    • 2019
  • This paper proposes a CMOS temperature sensor using inverter delay chains of the same size based on the pulse shrinking method. A temperature-pulse converter (TPC) uses two different temperature delay lines with inverter chains to generate a pulse in proportion to temperature, and a time-digital converter (TDC) shrinks the pulse using inverter chains of the same size to convert pulse width into a digital value to be insensitive to process changes. The chip was implemented with a $0.49{\mu}m{\times}0.23{\mu}m$ area using a $0.35{\mu}m$ CMOS process with a supply voltage of 3.3V. The measurement results show a resolution of $0.24^{\circ}C/bit$ for 9-bit data for a temperature sensor range of $0^{\circ}C$ to $100^{\circ}C$.

Improving the Accuracy of the Tapped Delay Time-to-Digital Converter Using Field Programmable Gate Array (Field-Programmable Gate Array를 사용한 탭 딜레이 방식 시간-디지털 변환기의 정밀도 향상에 관한 연구)

  • Jung, Do-Hwan;Lim, Hansang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.182-189
    • /
    • 2014
  • A tapped delay line time-to-digital converter (TDC) can be easily implemented using internal carry chains in a field-programmable gate array, and hence, its use is widespread. However, the tapped delay line TDC suffers from performance degradation because of differences in the delay times of dedicated carry chains. In this paper, a dual edge measurement method is proposed instead of a typical step signal to the delay cell to compensate for the performance degradation caused by wide-delay cells in carry chains. By applying a pulse of a fixed width as an input to the carry chains and using the time information between the up and down edges of the signal pulse, the timing accuracy can be increased. Two dedicated carry chain sites are required for the dual edge measurements. By adopting the proposed dual edge measurement method, the average delay widths of the two carry chains were improved by more than 35%, from 17.3 ps and 16.7 ps to 11.2 ps and 10.1 ps, respectively. In addition, the maximum delay times were improved from 41.4 ps and 42.1 ps to 20.1 ps and 20.8 ps, respectively.

An In-Band Noise Filtering 32-tap FIR-Embedded ΔΣ Digital Fractional-N PLL

  • Lee, Jong Mi;Jee, Dong-Woo;Kim, Byungsub;Park, Hong-June;Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a 1.9-GHz digital ${{\Delta}{\Sigma}}$ fractional-N PLL with a finite impulse response (FIR) filter embedded for noise suppression. The proposed digital implementation of FIR provides a simple method of increasing the number of taps without complicated calculation for gain matching. This work demonstrates 32 tap FIR filtering for the first time and successfully filtered the in-band phase noise generated from delta-sigma modulator (DSM). Design considerations are also addressed to find the optimum number of taps when the resolution of time-to-digital converter (TDC) is given. The PLL, fabricated in $0.11-{\mu}m$ CMOS, achieves a well-regulated in-band phase noise of less than -100 dBc/Hz for the entire range inside the bandwidth of 3 MHz. Compared with the conventional dual-modulus division, the proposed PLL shows an overall noise suppression of about 15dB both at in-band and out-of-band region.

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.

An Offset and Deadzone-Free Constant-Resolution Phase-to-Digital Converter for All-Digital PLLs (올-디지털 위상 고정 루프용 오프셋 및 데드존이 없고 해상도가 일정한 위상-디지털 변환기)

  • Choi, Kwang-Chun;Kim, Min-Hyeong;Choi, Woo-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.122-133
    • /
    • 2013
  • An arbiter-based simple phase decision circuit (PDC) optimized for high-resolution phase-to-digital converter made up of an analog phase-frequency detector and a time-to-digital converter for all-digital phase-locked loops is proposed. It can distinguish very small phase difference between two pulses even though it consumes lower power and has smaller input-to-output delay than the previously reported PDC. Proposed PDC is realized using 130-nm CMOS process and demonstrated by transistor-level simulations. A 5-bit P2D having no offset nor deadzone using the PDC is also demonstrated. A harmonic-lock-free and small-phase-offset delay-locked loop for fixing the P2D resolution regardless of PVT variations is also proposed and demonstrated.