DOI QR코드

DOI QR Code

Design of Phase Locked Loop (PLL) based Time to Digital Converter for LiDAR System with Measurement of Absolute Time Difference

LiDAR 시스템용 절대시간 측정을 위한 위상고정루프 기반 시간 디지털 변환기 설계

  • Yoo, Sang-Sun (Department of Smart Automobile, Pyeongtaek University)
  • Received : 2021.04.04
  • Accepted : 2021.04.19
  • Published : 2021.05.31

Abstract

This paper presents a time-to-digital converter for measuring absolute time differences. The time-to-digital converter was designed and fabricated in 0.18-um CMOS technology and it can be applied to Light Detection and Ranging system which requires long time-cover range and 50ps time resolution. Since designed time-to-digital converter adopted the reference clock of 625MHz generated by phase locked loop, it could have absolute time resolution of 50ps after automatic calibration and its cover range was over than 800ns. The time-to-digital converter adopted a counter and chain delay lines for time measurement. The counter is used for coarse time measurement and chain delay lines are used for fine time measurement. From many times experiments, fabricated time-to-digital converter has 50 ps time resolution with maximum INL of 0.8 LSB and its power consumption is about 70 mW.

본 논문은 절대 시간 측정 가능한 시간 디지털 변환기에 대한 논문으로 제안하는 시간 디지털 변환기는 0.18-um CMOS 공정을 이용하여 설계 되었고 IC로 제작하여 검증하였다. 설계된 시간 디지털 변환기는 라이다 시스템에 적용하기 위하여 긴 측정시간과 절대적인 50ps를 측정할 수 있어야하는데 위상고정루프의 625MHz 클록을 기준클록으로 사용하기 때문에 절대시간의 측정이 가능하며 디지털 보정회로를 이용하여 어떤 상황에서 든 50ps의 분해능을 가질 수 있다. 기준클록을 카운터하여 큰 시간 단위의 측정을 할 수 있어 최대 800ns의 시간이 측정가능하고 딜레이 체인을 이용하여 정밀한 시간 값을 측정 할 수 있다. 결과적으로 제작된 시간 디지털 변환기는 50ps 단위로 시간을 측정할 수 있는데 최대 오차는 INL 0.8-LSB정도이며 1.8V 인가전압에 전력 소모는 약 70mW 정도이다.

Keywords

Acknowledgement

This paper was supported by the Research Fund, 2019, Pyeongtaek University in Korea

References

  1. B. Yoon and S. Yoo, "Maples navigation based on DQN considering moving obstacles, and traing time reduction algorithm," Journal of the Korea Instiute of Information and Comunication Enginering, vol. 25, no. 3, pp. 377-383, Mar. 2021.
  2. M. Perenzoni, D. Perenzoni, and D. Stoppa, "A 64×64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6 km for spacecraft navigation and landing," IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 151-160, Jan. 2017. https://doi.org/10.1109/JSSC.2016.2623635
  3. F. M. D. Rocca, H. Mai, S. W. Hutchings, T. A. Abbas, K. Buckbee, A. Tsiamis, P. Lomax, I. Gyongy, N. A. W. Dutton, and R. K. Henderson, "A 128x128 SPAD motion-triggered time-of-flight image sensor with in-pixel histogram and column-parallel vision processor," IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1762-1775, Jul. 2020. https://doi.org/10.1109/JSSC.2020.2993722
  4. M. L. Hafiane, W. Wagner, Z. Dibi, and O. Manck, "Depth resolution enhancement technique for CMOS time-of-flight 3-D image sensors," IEEE Sensors J., vol. 12, no. 6, pp. 2320-2327, Jun. 2012. https://doi.org/10.1109/JSEN.2012.2187350
  5. M. Liu, H. Liu, X. Li, and Z. Zhu "A 60-m range 6.16-mW laser-power linear-mode LiDAR system with multiplex ADC/TDC in 65-nm CMOS," IEEE Trans. Circuits Syst. I Reg. Papers, vol. 67, no. 3, pp. 753-764, Mar. 2020. https://doi.org/10.1109/TCSI.2019.2955671
  6. C. Hong, S. Kim, J. Kim, and S. M. Park, "A linear-mode LiDAR sensor using a multi-channel CMOS transimpedance amplifier array," IEEE Sensors J., vol. 18, no. 17, pp. 7032-7040, Sep. 2018. https://doi.org/10.1109/JSEN.2018.2852794
  7. Y. Wang, X. Zhou, Z. Song, J. Kuang, and Q. Cao, "A 3.0-ps rms precision 277-MSamples/s throughput time-to-digital converter using multi-edge encoding scheme in a Kintex-7 FPGA," IEEE Trans. Nucl. Sci., vol. 66, no. 10, pp. 2275-2281, Oct. 2019. https://doi.org/10.1109/tns.2019.2938571
  8. P. Kwiatkowski and R. Szplet, "Efficient Implementation of Multiple Time Coding Lines-Based TDC in an FPGA Device," IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 7353-7364, 2020. https://doi.org/10.1109/tim.2020.2984929
  9. H. Wang, F. F. Dai, and H. Wang, "A reconfigurable Vernier time-to-digital converter with 2-D spiral comparator array and second-order ΔΣ linearizatio," IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 738-749, Mar. 2018. https://doi.org/10.1109/JSSC.2017.2788872
  10. L. Perktold and J. Christiansen, "A fine time-resolution (3 ps-rms) time-to-digital converter for highly integrated designs," in Proc. IEEE Int. Instrum. Meas. Technol. Conf. (I MTC), Minneapolis: MN, pp. 1092-1097, May. 2013.
  11. B. Markovic, S. Tisa, F. A. Villa, A. Tosi, and F. Zappa, "A high linearity, 17 ps precision time-to-digital converter based on a single-stage Vernier delay loop fine interpolation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 557-569, Mar. 2013. https://doi.org/10.1109/TCSI.2012.2215737
  12. J. P. Jansson, P. Keranen, S. Jahromi, and J. Kostamovaara, "Enhancing nutt-based time-to-digital converter performance with internal systematic averaging," IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 3928-3935, Jun. 2020. https://doi.org/10.1109/tim.2019.2932156