• Title/Summary/Keyword: silicon power MOSFETs

Search Result 23, Processing Time 0.027 seconds

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

Analytical Expressions of Temperature Dependent Breakdown Voltage and On-Resistance for Si Power MOSFETs (실리콘 전력 MOSFET의 온도 관련 항복 전압과 ON 저항을 위한 해석적 표현)

  • 정용성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.290-297
    • /
    • 2003
  • Analytical Expressions of temperature dependent breakdown voltage and on-resistance for silicon power MOSFETs are induced by employing the temperature dependent effective ionization coefficient extracted from temperature dependent ionization coefficients for electron and hole, and electron mobility in silicon. The analytical results for temperature dependent breakdown voltage are compared with experimental results for tile doping concentration, 4x10$^{14}$ cm$^{-3}$ , 1x10$^{15}$ cm$^{-3}$ , 6x10$^{16}$ cm$^{-3}$ respectively. The variations of temperature dependent on-resistance and breakdown voltage dependent ideal specific on-resistance are also compared with the ones reported previously. Good fits with the experimental results ate found for the breakdown voltages within 10% in error for the temperature in the range of 77~300K at each doping concentration.

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOl MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;John, M.Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.110-116
    • /
    • 2009
  • The prominent advantages of Dual Material Surrounding Gate (DMSG) MOSFETs are higher speed, higher current drive, lower power consumption, enhanced short channel immunity and increased packing density, thus promising new opportunities for scaling and advanced design. In this Paper, we present Transconductance-to-drain current ratio and electric field distribution model for dual material surrounding gate (DMSGTs) MOSFETs. Transconductance-to-drain current ratio is a better criterion to access the performance of a device than the transconductance. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Temperature Dependent Breakdown Voltage and On-resistance of Si Power MOSFETs (실리콘 전력 MOSFET의 온도에 따른 항복전압 및 On 저항)

  • Park, Il-Yong;Choe, Yeon-Ik;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.246-248
    • /
    • 2000
  • Closed-form expressions for the temperature dependent breakdown voltage and the on-resistance of the Si power MOSFETs were derived by employing effective temperature dependent ionization coefficient for electrons and holes. The breakdown voltage increases by 20% and the on-resistance increases 2 times when the temperature increases from 300 K to 423 K. The analytic results normalized to the values at 300 K show good agreement with the experimental data of Motorola within 3.5% and 7% for the breakdown voltage and the on-resistance, respectively.

  • PDF

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

Switching Loss and Performance Analysis of the Buck Converter using Si and SiC devices (Si 및 SiC 소자를 이용한 벅 컨버터의 스위칭 손실 및 성능 분석)

  • Lim, J.W.;Choe, J.M.;Cho, Y.H.;Cheo, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.411-412
    • /
    • 2014
  • In this paper, the switching losses and performances of Silicon Carbide(SiC) and Silicon based on the MOSFETs have been compared. To do this experiment, the buck converter using both SiC and Si devices have been built and tested. As a result, it has been confirmed that the converter with SiC devices shows better efficiency and performance compared with the converter using Si devices.

  • PDF

Metal Gate Electrode in SiC MOSFET (SiC MOSFET 소자에서 금속 게이트 전극의 이용)

  • Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.358-361
    • /
    • 2002
  • Self-aligned MOSFETS using a polysilicon gate are widely fabricated in silicon technology. The polysilicon layer acts as a mask for the source and drain implants and does as gate electrode in the final product. However, the usage of polysilicon gate as a self-aligned mask is restricted in fabricating SiC MOSFETS since the following processes such as dopant activation, ohmic contacts are done at the very high temperature to attack the stability of the polysilicon layer. A metal instead of polysilicon can be used as a gate material and even can be used for ohmic contact to source region of SiC MOSFETS, which may reduce the number of the fabrication processes. Co-formation process of metal-source/drain ohmic contact and gate has been examined in the 4H-SiC based vertical power MOSFET At low bias region (<20V), increment of leakage current after RTA was detected. However, the amount of leakage current increment was less than a few tens of ph. The interface trap densities calculated from high-low frequency C-V curves do not show any difference between w/ RTA and w/o RTA. From the C-V characteristic curves, equivalent oxide thickness was calculated. The calculated thickness was 55 and 62nm for w/o RTA and w/ RTA, respectively. During the annealing, oxidation and silicidation of Ni can be occurred. Even though refractory nature of Ni, 950$^{\circ}C$ is high enough to oxidize it. Ni reacts with silicon and oxygen from SiO$_2$ 1ayer and form Ni-silicide and Ni-oxide, respectively. These extra layers result in the change of capacitance of whole oxide layer and the leakage current

  • PDF

Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

  • Qin, Haihong;Ma, Ceyu;Zhu, Ziyue;Yan, Yangguang
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1255-1267
    • /
    • 2018
  • Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.

Reducing Overshoot Voltage of SiC MOSFET in Grid-Connected Hybrid Active NPC Inverters (계통 연계형 Hybrid Active NPC 인버터의 SiC MOSFET 오버슈트 전압 저감)

  • Lee, Deog-Ho;Kim, Ye-Ji;Kim, Seok-Min;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.459-462
    • /
    • 2019
  • This work presents methods for reducing overshoot voltages across the drain-source of silicon carbide (SiC) MOSFETs in grid-connected hybrid active neutral-point-clamped (ANPC) inverters. Compared with 3-level NPC-type inverter, the hybrid ANPC inverter can realize the high efficiency. However, SiC MOSFETs conduct its switching operation at high frequencies, which cause high overshoot voltages in such devices. These overshoot voltages should be reduced because they may damage switching devices and result in electromagnetic interference (EMI). Two major strategies are used to reduce the overshoot voltages, namely, adjusting the gate resistor and using a snubber capacitor. In this paper, advantages and disadvantages of these methods will be discussed. The effectiveness of these strategies is verified by experimental results.

Stress Dependence of Thermal Stability of Nickel Silicide for Nano MOSFETs

  • Zhang, Ying-Ying;Lee, Won-Jae;Zhong, Zhun;Li, Shi-Guang;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Lim, Sung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.110-114
    • /
    • 2007
  • Dependence of the thermal stability of nickel silicide on the film stress of inter layer dielectric (ILD) layer has been investigated in this study and silicon nitride $(Si_3N_4)$ layer is used as an ILD layer. Nickel silicide was formed with a one-step rapid thermal process at $500^{\circ}C$ for 30 sec. $2000{\AA}$ thick $Si_3N_4$ layer was deposited using plasma enhanced chemical vapor deposition after the formation of Ni silicide and its stress was split from compressive stress to tensile stress by controlling the power of power sources. Stress level of each stress type was also split for thorough analysis. It is found that the thermal stability of nickel silicide strongly depends on the stress type as well as the stress level induced by the $Si_3N_4$ layer. In the case of high compressive stress, silicide agglomeration and its phase transformation from the low-resistivity nickel mono-silicide to the high-resistivity nickel di-silicide are retarded, and hence the thermal stability is obviously improved a lot. However, in the case of high tensile stress, the thermal stability shows the worst case among the stressed cases.