Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.4.1054

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs  

Ke, Junji (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Zhao, Zhibin (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Sun, Peng (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Huang, Huazhen (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Abuogo, James (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Cui, Xiang (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University)
Publication Information
Journal of Power Electronics / v.19, no.4, 2019 , pp. 1054-1067 More about this Journal
Abstract
This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.
Keywords
Current distribution; Devices parameters; Parallel-connected devices; Screening; Silicon carbide (SiC) MOSFET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Li, S. Munk-Nielsen, S. Bęczkowski, and X. Wang, “A novel DBC layout for current imbalance mitigation in SiC MOSFET multichip power modules,” IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8042-8045, Dec. 2016.   DOI
2 J. Hu, O. Alatise, J. A. O. Gonzalez, R. Bonyadi, L. Ran and P. A. Mawby, “The effect of electrothermal nonuniformities on parallel connected SiC power devices under unclamped and clamped inductive switching,” IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4526-4535, Jun. 2016.   DOI
3 Y. Dong, H. Qin, D. Fu, H. Xu, and Y. Yan, "Research and application of wide bandgap device in electric vehicles," J. Power Supply, Vol. 14, No. 4, Jul. 2016.
4 Z Zeng, W Shao, B Hu, H Chen, X Liao, W Chen, H Li, and L Ran, "Chances and challenge of photovoltaic inverter with silicon carbide devices," Proc. CSEE, Vol. 37, No. 1, 2017.
5 J. K. Lim, P. Dimosthenis, J. Rabkowski, M. Bakowski, and H.-P. Nee, "Modeling of the impact of parameter spread on the switching performance of parallel-connected SiC VJFETs", Materials Science Forum, Vol. 740, pp. 1098-1102, Jan. 2013.   DOI
6 S. G. Kokosis, I. E. Andreadis, G. E. Kampitsis, P. Pachos, and S. Manias, "Forced current balancing of parallelconnected SiC jfets during forward and reverse conduction mode", IEEE Trans. Power Electron., Vol. 32, No. 2, pp. 1400-1410, Feb. 2017.   DOI
7 D. P. Sadik, J. Colmenares, D. Peftitsis, J. K. Lim, J. Rabkowski, and H. Nee, "Experimental investigations of static and transient current sharing of parallel-connected silicon carbide MOSFETs," in Proc. Eur. Conf. Power Electron. pp. 1-10, 2013.
8 G. Wang, J. Mookken, J. Rice, and M. Schupbach, "Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications," in Proc. IEEE Annu. Appl. Power Electron. Conf. Expo., pp. 1478-1483, 2014.
9 A. Castellazzi, A. Fayyaz, and R. Kraus, "SiC MOSFET device parameter spread and ruggedness of parallel multichip structures," Materials Science Forum, Vol. 924, pp. 811-817, Jun. 2018.   DOI
10 Z. Zheng, W. H. Shao, B. R. Hu, S. Y. Kang, X. L. Liao, H Li, and R. Li, "Active current sharing of paralleled SiC MOSFETs by coupling inductors," Proc. CSEE, Vol. 37, No. 7, Apr. 2017.
11 T. Bertelshofer, A. Maerz, and M.-M. Bakran, "Derating of parallel SiC MOSFETs considering switching imbalances," International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, 2018.
12 J. Qu, Experimental Statistics, Guangdong Higher Education Press, pp. 31-33, 2010.
13 Y. Wang and S. Sui, Experimental Design and MATLAB Data Analysis, Tsinghua University Press, pp. 10-12, 2012.
14 B. J. Baliga, Fundamentals of POWER Semiconductor Devices, Springer-Verlag, pp. 298-306, 2008.
15 ROHM Co., Ltd, Kyoto, Japan, Semiconductor R., SiC Power Devices and Modules Application Note, pp. 14-15, Jun. 2013.
16 S. Yin, K. J. Tseng, C. F. Tong, R. Simanjorang, C. J. Gajanayake, A. Nawawi1, Y. T. Liu, Y. Liu, K. Y. See, A. Sakanova, K. Men, and A. K. Gupta, "Gate driver optimization to mitigate shoot-through in high-speed switching SiC half bridge module," in Proc. Int. Conf. on Power Electro. and Drive Systems, pp. 484-491, 2015.
17 T. R. Mcnutt, A. R. Hefner, H. A. Mantooth, S. Berning, and S. H. Ryu, “Silicon carbide power MOSFET model and parameter extraction sequence,” IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 353-363, Mar. 2007.   DOI
18 K. Chen, Z. Zhao, L. Yuan, T. Lu, and F. He, “The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET,” IEEE Trans. Electron Devices, Vol. 62, No. 2, pp. 333-338, Feb. 2015.   DOI
19 J. Ke, Z. Zhao, P. Sun, H. Huang, J. Abuogo, and X. Cui, "New screening method for improving transient current sharing of paralleled SiC MOSFETs," IEEE International Power Electronics Conference (IPEC), pp. 1125-1130, 2018.
20 A. Wintrich, J. Nascimento, and M. Leipenat, "Influence of parameter distribution and mechanical construction on switching behavior of parallel IGBT," in Proc. Power Convers. Intell. Motion Europe/Eur. Int. Exhib. Conf. Power Electron. Intell. Motion Renewable Energy Energy Manage., 2006.
21 J. Wang, S. H. Chung, and T. H. Li, “Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 573-590, Jan. 2013.   DOI
22 A. Castellazzi, M. Johnson, M. Piton, and M. Guyennete, "Experimental analysis and modeling of multi-chip IGBT modules short-circuit behavior," in Proc. Int. Power Electro. and Motion Control Conf., pp. 285-290, 2009.
23 Parallel Operation of Dynex IGBT Modules, in Application Note, DYNEX, https://www.digchip.com/application-notes/ 49/49162.php, 2002.
24 N. Y. A. Shammas, R. Withanage, and D. Chamund, “Optimisation of the number of IGBT devices in A Series-parallel string,” Microelectron. J., Vol. 39, No. 6, pp. 899-907, Jan. 2008.   DOI
25 X. Tang, X. Cui, Z. Zhao, P. Zhang, J. Wen, and R. Zhang, “Analysis of transient current distribution characteristics of parallel chips in press pack IGBT,” Proc. CSEE, Vol. 37, No. 1, pp. 233-243, Jan. 2017.
26 E. Gurpinar and A. Castellazzi, “Single-phase T-Type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs,” IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 7148-7160, Oct. 2016.   DOI
27 H. Li and S. Munk-Nielsen, "Challenges in switching SiC MOSFET without ringing," in Proc. Power Convers. Intell. Motion Europe/Eur. Int. Exhib. Conf. Power Electron. Intell. Motion Renewable Energy Energy Manage., pp. 1-6, 2014.
28 Z. Chen, Y. Yao, M. Danilovic, and D. Boroyevich, "Performance evaluation of SiC power MOSFETs for high-temperature applications," 15th International Power Electronics and Motion Control Conference (EPE/PEMC), pp. 1-8, 2012.
29 P. Xu, J. Ke, Z. Zhao, Z. Xie, and C. Wei, "Study on high temperature characteristics of static characteristics and parasitic capacitances of silicon carbide MOSFET", J. North China Electr. Power Univ., Vol. 45, No. 4, pp. 17-24, Jul. 2018.
30 J. Ke, Z. Zhao, P. Sun, Q. Zou, Y. Cui, and F. Yang, “Influence of devices parameters on the current sharing of paralleled SiC MOSFETs using statistics analysis,” Semicond. Technol., Vol. 43, No. 3, pp. 181-187, Mar. 2018.
31 D. Peftitsis, R. Baburske, J. Rabkowski, J. Lutze, G. Tolstoy, and H. Nee, “Challenges regarding parallel connection of SiC JFETs,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1449-1463, Mar. 2013.   DOI
32 K. SHENG, Q. GUO, J. ZHANG, and Z. QIAN, “Development and prospect of SiC power devices in power grid,” Proc. CSEE, Vol. 32, No. 30, pp. 1-7, 2012.
33 X. Wang, “Researches and applications of wide bandgap SiC power devices in electric vehicles,” Proc. CSEE, Vol. 34, No. 3, pp. 371-379, 2014.
34 P. Friedrichs, "SiC power devices - Recent and upcoming developments," IEEE International Symposium on Industrial Electronics, pp. 993-997, 2006.
35 J. Fabre and P. Ladoux, "Parallel connection of SiC MOSFET modules for future use in traction converters," in Proc. Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles, pp. 1-6, 2015.
36 H. Li, S. Munk-Nielsen, C. Pham, and S. Beczkowski, "Circuit mismatch influence on performance of paralleling silicon carbide MOSFETs," in Proc. Eur. Conf. Power Electron, pp. 1-8, 2014.
37 H. Li, S. Munk-Nielsen, S. Wang, R. Maheshwari, S. Beczkowski, C. Uhrenfeldt, and W. Franke, “Influences of device and circuit mismatches on paralleling silicon carbide MOSFETs,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 621-634, Jan. 2015.   DOI