• 제목/요약/키워드: polynomial algebra

검색결과 55건 처리시간 0.023초

GENERALIZED SELF-INVERSIVE BICOMPLEX POLYNOMIALS WITH RESPECT TO THE j-CONJUGATION

  • Matsui, Yutaka;Sato, Yuhei
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.885-895
    • /
    • 2021
  • In this paper, we study a kind of self-inversive polynomials in bicomplex algebra. For a bicomplex polynomial, this is the study of a relation between a kind of symmetry of its coefficients and a kind of symmetry of zeros. For our deep study, we define several new levels of self-inversivity. We prove some functional equations for standard ones, a decomposition theorem for generalized ones and a comparison theorem. Although we focus the j-conjugation in our study, our argument can be applied for other conjugations.

SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE TRUNCATED EXPONENTIAL BASED SHEFFER POLYNOMIAL SEQUENCES

  • Choi, Junesang;Jabee, Saima;Shadab, Mohd
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.533-546
    • /
    • 2020
  • Since Sheffer introduced the so-called Sheffer polynomials in 1939, the polynomials have been extensively investigated, applied and classified. In this paper, by using matrix algebra, specifically, some properties of Pascal and Wronskian matrices, we aim to present certain interesting identities involving the 2-variable truncated exponential based Sheffer polynomial sequences. Also, we use the main results to give some interesting identities involving so-called 2-variable truncated exponential based Miller-Lee type polynomials. Further, we remark that a number of different identities involving the above polynomial sequences can be derived by applying the method here to other combined generating functions.

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Alnajjar, Hasan
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.401-414
    • /
    • 2019
  • Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

SOME UMBRAL CHARACTERISTICS OF THE ACTUARIAL POLYNOMIALS

  • Kim, Eun Woo;Jang, Yu Seon
    • 충청수학회지
    • /
    • 제29권1호
    • /
    • pp.73-82
    • /
    • 2016
  • The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.

A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

  • KIM, SEGYEONG;PARK, JONG-YOULL
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.399-404
    • /
    • 2005
  • Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let $M^p$ be the sub-algebra of M generated by $x^p$, $x{\in}M$. Eggert[3] conjectures that $dim_kM{\geq}pdim_kM^p$. In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,\;X_2,\;{\cdots},\;X_t]$ is a polynomial ring with indeterminates $X_1,\;X_2,\;{\cdots},\;X_t$ over k and $R^+$ is the maximal ideal of R generated by $X_1,\;X_2,{\cdots},\;X_t$ and I is a monomial ideal of R containing $X_1^{n_1+1},\;X_2^{n_2+1},\;{\cdots},\;X_t^{n_t+1}$ ($n_i{\geq}0$ for all i).

  • PDF

삼차방정식 해의 작도(불)가능성에 대한 학습 자료 개발 (Development of Learning Materials on Constructibility of Roots of Cubic Polynomials)

  • 신현용;한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제30권4호
    • /
    • pp.469-497
    • /
    • 2016
  • 본 연구에서는 추상대수학의 체, 벡터공간, 최소다항식 등의 개념을 중심으로 삼차방정식 해의 작도(불)가능성을 학습할 수 있는 학습 자료와 초등수학적 접근을 구현한 학습 자료를 각각 개발하였다. 그리고 개발된 자료들에 대해 타당성, 학습 가능성, 장점 및 단점을 실험적으로 확인하였다. 본 연구에서 개발된 자료들은 중등학교의 수학 우수학생들, 수학을 배우는 대학생들, 수학교사들에게 유익할 것으로 기대되며, 3대 작도불능문제의 해결, 다양한 3차방정식의 해의 작도(불)가능성을 학습하는데 활용될 수 있을 것으로 기대된다.

INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS

  • Kudo, Shotaro
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1193-1200
    • /
    • 2013
  • The center of the Lie group $SU(n)$ is isomorphic to $\mathbb{Z}_n$. If $d$ divides $n$, the quotient $SU(n)/\mathbb{Z}_d$ is also a Lie group. Such groups are locally isomorphic, and their Weyl groups $W(SU(n)/\mathbb{Z}_d)$ are the symmetric group ${\sum}_n$. However, the integral representations of the Weyl groups are not equivalent. Under the mod $p$ reductions, we consider the structure of invariant rings $H^*(BT^{n-1};\mathbb{F}_p)^W$ for $W=W(SU(n)/\mathbb{Z}_d)$. Particularly, we ask if each of them is a polynomial ring. Our results show some polynomial and non-polynomial cases.

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.