DOI QR코드

DOI QR Code

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Received : 2018.04.28
  • Accepted : 2018.08.22
  • Published : 2019.04.30

Abstract

Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

Keywords

References

  1. H. Alnajjar, Leonard pairs associated with the equitable generators of the quantum algebra $U_q(sl_2)$, Linear Multilinear Algebra 59 (2011), no. 10, 1127-1142. https://doi.org/10.1080/03081087.2011.565757
  2. H. Alnajjar and B. Curtin, Leonard pairs from the equitable basis of $sl_2$, Electron. J. Linear Algebra 20 (2010), 490-505.
  3. B. Curtin, Modular Leonard triples, Linear Algebra Appl. 424 (2007), no. 2-3, 510-539. https://doi.org/10.1016/j.laa.2007.02.024
  4. S. Gao, Y.Wang, and B. Hou, The classification of Leonard triples of Racah type, Linear Algebra Appl. 439 (2013), no. 7, 1834-1861. https://doi.org/10.1016/j.laa.2013.05.014
  5. B. Hartwig, Three mutually adjacent Leonard pairs, Linear Algebra Appl. 408 (2005), 19-39. https://doi.org/10.1016/j.laa.2005.04.005
  6. T. Ito, H. Rosengren, and P. Terwilliger, Evaluation modules for the q-tetrahedron algebra, Linear Algebra Appl. 451 (2014), 107-168. https://doi.org/10.1016/j.laa.2014.03.019
  7. K. Nomura, Leonard pairs having LB-TD form, Linear Algebra Appl. 455 (2014), 1-21. https://doi.org/10.1016/j.laa.2014.04.025
  8. K. Nomura and P. Terwilliger, Affne transformations of a Leonard pair, Electron. J. Linear Algebra 16 (2007), 389-417.
  9. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), no. 1-3, 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
  10. P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002), no. 2, 827-888. https://doi.org/10.1216/rmjm/1030539699
  11. P. Terwilliger, Introduction to Leonard pairs, J. Comput. Appl. Math. 153 (2003), no. 1-2, 463-475. https://doi.org/10.1016/S0377-0427(02)00600-3
  12. P. Terwilliger, Leonard pairs and the q-Racah polynomials, Linear Algebra Appl. 387 (2004), 235-276. https://doi.org/10.1016/j.laa.2004.02.014
  13. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), no. 1-3, 149-203. https://doi.org/10.1016/S0024-3795(01)00242-7
  14. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra 291 (2005), no. 1, 1-45. https://doi.org/10.1016/j.jalgebra.2005.05.033
  15. P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005), 307-332. https://doi.org/10.1007/s10623-004-4862-7
  16. P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal polynomials and special functions, 255-330, Lecture Notes in Math., 1883, Springer, Berlin, 2006.
  17. P. Terwilliger and R. Vidunas, Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), no. 4, 411-426. https://doi.org/10.1142/S0219498804000940