Acknowledgement
The authors would like to express our gratitude to Professor K. Ihara and the referee for several useful comments.
References
- S. Ahmadi and M. Bidkham, Self-inversive bicomplex polynomials, Punjab Univ. J. Math. (Lahore) 48 (2016), no. 1, 55-64.
- D. Joyner and T. Shaska, Self-inversive polynomials, curves, and codes, in Higher genus curves in mathematical physics and arithmetic geometry, 189-208, Contemp. Math., 703, Amer. Math. Soc., Providence, RI, 2018. https://doi.org/10.1090/conm/703/14138
- J. E. Kim and K. H. Shon, Properties of regular functions with values in bicomplex numbers, Bull. Korean Math. Soc. 53 (2016), no. 2, 507-518. https://doi.org/10.4134/BKMS.2016.53.2.507
- M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, and A. Vajiac, Bicomplex holomorphic functions, Frontiers in Mathematics, Birkhauser/Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-24868-4
- M. Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966.
- Y. Matsui and Y. Sato, Characterization theorems of Riley type for bicomplex holomorphic functions, Commun. Korean Math. Soc. 35 (2020), no. 3, 825-841. https://doi.org/10.4134/CKMS.c190323
- P. J. O'Hara and R. S. Rodriguez, Some properties of self-inversive polynomials, Proc. Amer. Math. Soc. 44 (1974), 331-335. https://doi.org/10.2307/2040432
- C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), no. 3, 413-467. https://doi.org/10.1007/BF01443559