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INVARIANT RINGS AND REPRESENTATIONS OF

SYMMETRIC GROUPS

Shotaro Kudo

Abstract. The center of the Lie group SU(n) is isomorphic to Zn. If d
divides n, the quotient SU(n)/Zd is also a Lie group. Such groups are lo-
cally isomorphic, and their Weyl groups W (SU(n)/Zd) are the symmetric
group Σn. However, the integral representations of the Weyl groups are
not equivalent. Under the mod p reductions, we consider the structure
of invariant rings H∗(BTn−1;Fp)W for W = W (SU(n)/Zd). Particu-
larly, we ask if each of them is a polynomial ring. Our results show some
polynomial and non–polynomial cases.

Let W be a finite group. For a modular representation

ρ :W −→ GL(n;Fp),

the group ρ(W ) acts on the polynomial algebra S(V ) = Fp[t1, . . . , tn]. The set

of invariants S(V )ρ(W ) has a ring structure, and it is said to be the ring of
invariants, [8] and [7]. In this paper, we discuss the invariant rings for various
representations of the symmetric group Σn, along the line of work of [6].

The following is a topological aspect of our results, [8, Chapter 10]. Sup-
pose G is a compact connected Lie group. It is well-known that the coho-
mology of the classifying space H∗(BG;Q) is isomorphic to the ring of in-
variants H∗(BT n;Q)W (G), which is a polynomial ring. We recall that Q can
be replaced by a finite field Fp when the prime p is large. Here we note
S(V ) ∼= H∗(BT n;Fp).

We consider the integral representations of symmetric groups, which is the
Weyl group of SU(n). If d divides n, the quotient SU(n)/Zd is also a Lie group.
The integral representations of Σn induced by the actions of the Weyl groups of
SU(n)/Zd on maximal tori are Z-inequivalent, [2]. In fact, the Z-representation
ofW (SU(n)/Zd) on T

n−1, up to Z-equivalence, is given by φ−1
d W (SU(n))φd for

a non-singular matrix φd. The representation of Σn =W (SU(n)) is generated
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by the permutation matrices together with the following (n−1)×(n−1) matrix:












1 −1
. . .

...

1
...

−1













.

In other words, each column vector is one of the set of the standard basis
{e1, e2, . . . , en−1} and the vector b = t(−1,−1, . . . ,−1).

LetWn,d denote φ
−1
d W (SU(n))φd. We use the same symbol for both integral

and modular representations. If p does not divide d, then Wn,d
∼= W (SU(n))

at p. It is known that H∗(BSU(n);Fp) = H∗(BT n−1;Fp)
Wn,1 , and that

H∗(BT 2;F3)
W3,3 is a polynomial ring which is not realizable, [5]. In the

case of n = 4 and d = 2, the following result shows that the invariant ring
H∗(BT 3;F2)

W4,2 is a polynomial ring which is realizable.

Theorem 1. Let H∗(BT 3;F2) = F2[t1, t2, t3] with deg(ti) = 2. The following

hold:
(1) H∗(BT 3;F2)

W4,2 = F2[x2, x4, x6], where x2 = t3, x4 = t21 + t22 + t1t2 +
t1t3 + t2t3 and x6 = t1t2(t1 + t2 + t3).

(2) H∗(BT 3;F2)
W4,2 ∼= H∗(BSU(3)×BS1;F2).

We define the homomorphism ρd : Σ4 −→ GL(3;F2) by ρd(x) = φ−1
d xφd for

x ∈ Σ4. Then Im ρ2 =W4,2 and ker ρ2 ∼= Z2. If d = 4, on the other hand, then
ρ4 is a faithful representation. The structure of H∗(BT 4;F2)

W4,4 is as follows:

Theorem 2. For n = d = 4, the following hold:
(1) H∗(BT 3;F2)

W4,4 = F2[x2, x8, x12], where x2 = t3, x8 = t41 + t42 + t21t
2
2 +

t21t
2
3 + t22t

2
3+ t21t2t3 + t1t

2
2t3 + t1t2t

2
3 and x12 = t1t2(t1 + t2)(t1 + t3)(t2 + t3)(t1 +

t2 + t3).
(2) H∗(BT 3;F2)

W4,4 is not realizable.

We note here that, in the case of n = d, the representationWn,n is equivalent
to the dual representation W (SU(n))∗. It is known, [3], that for p ≥ 5, the
invariant ring H∗(BT p−1;Fp)

W (SU(p))∗ is not polynomial. We will show some
analogous results for p = 2, 3.

Theorem 3. The following hold:
(1) Let n = 6, 8. Then H∗(BT n−1;F2)

Wn,n is not a polynomial ring.

(2) Let n = 6, 9. Then H∗(BT n−1;F3)
Wn,n is not a polynomial ring.

We use a result of Dwyer–Wilkerson [3, Theorem 1.4]. Suppose that V is
a finite dimensional vector space over the field Fp, and that W is a subgroup
of Aut(V ). Let U be a subset of V , and WU the subgroup of W consisting of
elements which fix U pointwise. Then if S(V )W

∗

is a polynomial ring over Fp,
then WU must be a pseudoreflection group.
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1. Invariant rings that are polynomial rings

As sated in the introduction, the representation of Σn = W (SU(n)) is gen-
erated by the permutation matrices Σn−1 together with the following (n− 1)×
(n− 1) matrix:











1 0 · · · −1
0 1 −1
...

. . .
...

0 0 · · · −1











We write Wn,d = φ−1
d W (SU(n))φd for the following matrix φd:

φd =











1 0
. . .

...
1 0

d− 1 · · · d− 1 d











.

We will prove Theorem 1 and Theorem 2 in this section. We consider the case
of n = 4. The representation W (SU(4)) is generated by 3 reflections.

W (SU(4)) = Σ4 =

〈





0 1 0
1 0 0
0 0 1



 ,





1 0 0
0 0 1
0 1 0



 ,





1 0 −1
0 1 −1
0 0 −1





〉

.

First take d = 2. Notice that φ2 and φ−1
2 can be expressed as follows:

φ2 =





1 0 0
0 1 0
1 1 2



 , φ−1
2 =





1 0 0
0 1 0

− 1
2 − 1

2
1
2



 .

Consequently, the reflection groupW4,2 = φ−1
2 W (SU(4))φ2 is generated by the

following:

W4,2 =

〈





0 1 0
1 0 0
0 0 1



 ,





1 0 0
1 1 2

−1 0 −1



 ,





0 −1 2
−1 0 −2
0 0 1





〉

.

Next consider the mod 2 reduction.

W4,2 =

〈





0 1 0
1 0 0
0 0 1



 ,





1 0 0
1 1 0
1 0 1





〉

.

Hence, we see W4,2
∼= Σ3 at p = 2.

We recall how to see if a ring of invariants H∗(BT n;Fp)
W is polynomial, [4],

[7] and [8]. A set of n elements x1, x2, . . . , xn ∈ H∗(BT n;Fp)
W is said to be a
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system of parameters if the solution of the following system of equations






















x1(t1, t2, . . . , tn) = 0

x2(t1, t2, . . . , tn) = 0
...

xn(t1, t2, . . . , tn) = 0

is trivial. Namely t1 = t2 = · · · = tn = 0. As usual, we write H∗(BT n;Fp) =
Fp[t1, t2, . . . , tn]. Let d(x) denote 1

2 deg(x) so that d(ti) = 1 for 1 ≤ i ≤ n.
According to [8, Proposition 5.5.5], for a finite groupW , if we can find a system
of parameters {x1, x2, . . . xn} with

∏n
i=1 d(xi) = |W |, then H∗(BT n;Fp)

W =
Fp[x1, x2, . . . xn].

Proof of Theorem 1. (1) Suppose x2 = t3, x4 = t21 + t22 + t1t2 + t1t3 + t2t3
and x6 = t1t2(t1 + t2 + t3). It is easy to check that the element x2, x4, x6
are W4,2-invariant, and that {x2,x4,x6} is a system of parameters. Conse-
quently H∗(BT 3F2)

W4,2 is the polynomial ring generated by x2, x4 and x6,
since |W4,2| = 6 = d(x2) · d(x4) · d(x6).

(2) Recall that the mod 2 reduction of W4,2 is generated by A and B, where

A =
(

0 1 0
1 0 0
0 0 1

)

and B =
(

1 0 0
1 1 0
1 0 1

)

. Let ψ =
(

1 1 0
1 0 0
0 1 1

)

. Then a calculation shows

Ā = ψ−1Aψ =





1 1 0
0 1 0
0 0 1



 and B̄ = ψ−1Bψ =





0 1 0
1 0 0
0 0 1



 .

Hence, both matrices Ā and B̄ are elements of W (SU(3)) × W (S1). No-
tice that the mod 2 reduction of W (SU(3)) is generated by ( 0 1

1 0 ) and ( 1 1
0 1 ).

This means that W4,2 is equivalent to W (SU(3)) ×W (S1). Therefore, we see

H∗(BT 3;F2)
W4,2 ∼= H∗(BT 3;F2)

W (SU(3))×W (S1) = H∗(BSU(3) × BS1;F2).
This completes the proof. �

Next consider the case of d = 4. For φ4 =
(

1 0 0
0 1 0
3 3 4

)

, we see W4,4 =

φ−1
4 W (SU(4))φ4. The reflection group W4,4 is generated by the matrices

(

0 1 0
1 0 0
0 0 1

)

,
(

1 0 0
3 3 4
−3 −2 −3

)

and
(

−2 −3 −4
−3 −2 −4
3 3 5

)

. Hence its mod 2 reduction is as fol-

lows:

W4,4 =

〈





0 1 0
1 0 0
0 0 1



 ,





1 0 0
1 1 0
1 0 1



 ,





0 1 0
1 0 0
1 1 1





〉

.

Proof of Theorem 2. (1) Notice that {x2, x8, x12} is a system of parameters.
Furthermore |W4,4| = 24 = d(x2) · d(x8) · d(x12). An argument similar to the
one in Theorem 1 shows the desired result.
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(2) If the unstable algebraH∗(BT 3;F2)
W4,4 is realizable, there is a 2-compact

groupX such thatH∗(BT 3;F2)
W4,4 ∼= H∗(BX ;F2). Since the polynomial alge-

bra is generated by even-degree elements, the classifying space BX is 2-torsion
free. So the 2-adic cohomology is also a polynomial algebra generated by el-
ements of the same degree. We can find, [1], a compact connected Lie group
G such that H∗(BX ;Z∧

2 )
∼= H∗(BG;Z∧

2 ). However, any Lie group G does not
satisfy the condition that H∗(BG;F2) = F2[x2, x8, x12], since this cohomol-
ogy does not contain a generator of degree 4. Thus, H∗(BT 3;F2)

W4,4 is not
realizable. �

Remark 1.1. Recall that in the case of n = d, the representation Wn,n is
equivalent to the dual representation W (SU(n))∗. In fact, for the following
(n− 1)× (n− 1) matrix,

φ =











2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2











we see [5] that φ−1σφ = tσ for each of the generators σ of the reflection group
Σn−1. We claim that φ−1Σn−1φ = Σ∗

n−1. Consequently, we see ψ−1Wn,nψ =

W (SU(n))∗ for ψ = φ−1
n φ.

2. Non-polynomial cases

We will prove Theorem 3 in this section. To do so, we need a few basic
results. As sated before, according to a result of Dwyer-Wilkerson, we will find a
subset U such that the subgroupWU is not generated by pseudoreflections. The
representation W (SU(n)) as a subgroup of GL(n− 1,Fp) is generated by the
permutation representation of Σn−1 together with the following (n−1)×(n−1)
matrix:











1 0 −1
. . .

...
0 1 −1
0 · · · 0 −1











In other words, if we let
∑n

i=1 ti = 0, then the representation of W (SU(n))
can be regarded as the permutation representation of Σn. For instance, when

n = 4, the transposition (1, 2) corresponds to the matrix
(

0 1 0
1 0 0
0 0 1

)

, (2, 3) to
(

1 0 0
0 0 1
0 1 0

)

, and (3, 4) to
(

1 0 −1
0 1 −1
0 0 −1

)

, respectively. We will use this convention.

Proof of Theorem 3. (1) First we consider the case of n = 6. Let x = t(1, 1, 1,
0, 0) and y = t(1, 1, 0, 1, 1), and let U = {x,y}. Recall that any element of
W (SU(6)) is a 5 × 5 matrix such that each column is one of the set of the
standard basis {e1, e2, e3, e4, e5} and the vector b = t(1, 1, 1, 1, 1), since p = 2.
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Take a matrix A = (a1,a2,a3,a4,a5) ∈ W (SU(6)) such that Ax = x. Notice
that Ax = a1 + a2 + a3 and x = e1 + e2 + e3. If the first column a1 is e1,
then b 6∈ {a2,a3}, and hence {a2,a3} = {e2, e3}. Similarly, if a1 = e4, then
one can show {a2,a3} = {e5, b}. It turns out that all possible combinations
are either

{a1,a2,a3} = {e1, e2, e3} and {a4,a5} ⊂ {e4, e5, b}

or
{a1,a2,a3} = {e4, e5, b} and {a4,a5} ⊂ {e1, e2, e3}.

Furthermore, we have Ay = y if A ∈WU . Again, notice that Ay = a1 + a2 +
a4+a5 and y = e1+e2+e4+e5. One can show that a3 = e3 or b, and hence
WU

∼= D8 as follows:

WU =

{

e, (1, 2), (4, 5), (1, 2)(4, 5)
(1, 4)(2, 5)(3, 6), (1, 5, 2, 4)(3, 6), (1, 4, 2, 5)(3, 6), (1, 5)(2, 4)(3, 6)

}

.

Here we regard, for example, as follows:

(1, 2) = (e2, e1, e3, e4, e5) and (1, 5, 2, 4)(3, 6) = (e5, e4, b, e1, e2).

Since WU is not a pseudoreflection group, we see that H∗(BT 5;F2)
W6,6 is not

a polynomial ring by [3].
Next consider the case of n = 8. Let U = {x,y, z} for x = t(1, 1, 1, 1, 0, 0, 0),

y = t(1, 1, 0, 0, 1, 1, 0) and z = t(1, 0, 1, 0, 1, 0, 1). Any element of W (SU(8))
is a 7 × 7 matrix such that each column is one of the set of the standard
basis {e1, e2, . . . , e7} and the vector b = t(1, 1, 1, 1, 1, 1, 1). Take a matrix
A = (a1,a2, . . . ,a7) ∈ W (SU(8)) such that Ax = x. If the first column a1 is
e1, then {a2,a3,a4} = {e2, e3, e4}. Similarly, if a1 = e5, then {a2,a3,a4} =
{e6, e7, b}. All possible combinations are either

{a1,a2,a3,a4} = {e1, e2, e3, e4} and {a5,a6,a7} ⊂ {e5, e6, e7, b}

or

{a1,a2,a3,a4} = {e5, e6, e7, b} and {a5,a6,a7} ⊂ {e1, e2, e3, e4}.

Furthermore, we have Ay = y and Az = z if A ∈WU . One can show that WU

is expressed as follows:

WU = Z/2〈α〉 × Z/2〈β〉 × Z/2〈γ〉,

where α = (1, 2)(3, 4)(5, 6)(7, 8), β = (1, 3)(2, 4)(5, 7)(6, 8) and γ = (1, 5)(2, 6)
(3, 7)(4, 8). This group is not a pseudoreflection group, hence H∗(BT 7;F2)

W8,8

is not a polynomial ring.
(2) We consider the case of n = 6 at p = 3. Let U = {x,y} for x =

t(1, 1,−1,−1, 0) and y = (1,−1, 0, 1,−1). Take a matrixA=(a1,a2,a3,a4,a5)
∈ W (SU(6)) such that Ax = x. It the first column a1 is e1, then a2 = e2.
Similarly, if a1 = e3, then a2 = e4, and if a1 = e5, then a2 = b. Here
b = t(−1,−1,−1,−1,−1). One of the following holds:

{a1,a2} = {e1, e2}, {a3,a4} = {e3, e4} and a5 ∈ {e5, b}



INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS 1199

or

{a1,a2} = {e3, e4}, {a3,a4} = {e5, b} and a5 ∈ {e1, e2}

or

{a1,a2} = {e5, b}, {a3,a4} = {e1, e2} and a5 ∈ {e3, e4}.

Furthermore, we have Ay = y if A ∈ WU . It follows that

WU = Z/3〈α〉,

where α = (1, 3, 5)(2, 4, 6). Therefore, this group is not a pseudoreflection
group, and hence H∗(BT 5;F3)

W6,6 is not a polynomial ring.
Next consider the case of n = 9. Let U = {x,y} for x = t(1, 1, 1,−1,−1,−1,

0, 0) and y = t(1,−1, 0, 1,−1, 0, 1,−1). Take a matrix A = (a1,a2, . . . ,a8) ∈
W (SU(9)) such that Ax = x. It the first column a1 is e1, then we obtain
{a2,a3} = {e2, e3}. Similarly, if a1 = e4, then {a2,a3} = {e5, e6}, and if
a1 = e7, then {a2,a3} = {e8, b}. Here b = t(−1,−1,−1,−1,−1,−1,−1,−1).
We see that one of the following holds:

{a1,a2,a3}={e1, e2, e3}, {a4,a5,a6}={e4, e5, e6} and {a7,a8} ⊂ {e7, e8, b}

or

{a1,a2,a3}={e4, e5, e6}, {a4,a5,a6}={e7, e8, b} and {a7,a8} ⊂ {e1, e2, e3}

or

{a1,a2,a3}={e7, e8, b}, {a4,a5,a6}={e1, e2, e3} and {a7,a8}⊂{e4, e5, e6}.

Furthermore, we have Ay = y if A ∈ WU . Consequently, we see that

WU = Z/3〈α〉 × Z/3〈β〉,

where α = (1, 2, 3)(4, 5, 6)(7, 8, 9) and β = (1, 4, 7)(2, 5, 8)(3, 6, 9). Once again
H∗(BT 8;F3)

W9,9 is not a polynomial ring. �

Remark 2.1. In the proof of Theorem 3, we have found subgroups WU which
are not pseudoreflection groups. In the case of n = 6 and p = 2, the group WU

can be made smaller. Namely, if z = t(1, 0, 1, 0, 1) and U = {x,y, z}, then WU

can be expressed as follows:

WU = Z/2〈α〉,

where α = (1, 4)(2, 5)(3, 6). This is not a pseudoreflection group.
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[4] , Poincaré duality and Steinberg’s theorem on rings of coinvariants, Proc. Amer.

Math. Soc. 138 (2010), no. 10, 3769–3775.



1200 SHOTARO KUDO

[5] K. Ishiguro, Projective unitary groups and K-theory of classifying spaces, Fukuoka Univ.
Sci. Rep. 28 (1998), no. 1, 1–6.

[6] , Invariant rings and dual representations of dihedral groups, J. Korean Math.
Soc. 47 (2010), no. 2, 299–309.

[7] R. M. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathemat-
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