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INVARIANT RINGS AND REPRESENTATIONS OF
SYMMETRIC GROUPS

SHOTARO KUDO

ABSTRACT. The center of the Lie group SU(n) is isomorphic to Z,. If d
divides n, the quotient SU(n)/Z4 is also a Lie group. Such groups are lo-
cally isomorphic, and their Weyl groups W (SU(n)/Z,) are the symmetric
group X,. However, the integral representations of the Weyl groups are
not equivalent. Under the mod p reductions, we consider the structure
of invariant rings H*(BT" 1;Fp)W for W = W (SU(n)/Zg). Particu-
larly, we ask if each of them is a polynomial ring. Our results show some
polynomial and non—polynomial cases.

Let W be a finite group. For a modular representation
p: W — GL(n;Fp),

the group p(W) acts on the polynomial algebra S(V) = Fp[t1,...,t,]. The set
of invariants S(V)?(W) has a ring structure, and it is said to be the ring of
invariants, [8] and [7]. In this paper, we discuss the invariant rings for various
representations of the symmetric group ¥,,, along the line of work of [6].

The following is a topological aspect of our results, [8, Chapter 10]. Sup-
pose G is a compact connected Lie group. It is well-known that the coho-
mology of the classifying space H*(BG;Q) is isomorphic to the ring of in-
variants H*(BT™; Q)" (%), which is a polynomial ring. We recall that Q can
be replaced by a finite field I, when the prime p is large. Here we note
S(V) = H*(BT™F,).

We consider the integral representations of symmetric groups, which is the
Weyl group of SU(n). If d divides n, the quotient SU(n)/Z, is also a Lie group.
The integral representations of ¥, induced by the actions of the Weyl groups of
SU(n)/Z4 on maximal tori are Z-inequivalent, [2]. In fact, the Z-representation
of W(SU(n)/Z4) on T™~*, up to Z-equivalence, is given by ¢ W (SU (n))¢q for
a non-singular matrix ¢4. The representation of 3, = W (SU(n)) is generated
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by the permutation matrices together with the following (n—1) x (n—1) matrix:

1 -1

-1
In other words, each column vector is one of the set of the standard basis
{e1,es,...,e,_1} and the vector b =*(—1,-1,...,—1).

Let W, 4 denote qﬁ;lW(SU(n))qbd. We use the same symbol for both integral
and modular representations. If p does not divide d, then W, 4 = W(SU(n))
at p. It is known that H*(BSU(n);F,) = H*(BT" 1;F,)""1, and that
H*(BT?;F3)"s3 is a polynomial ring which is not realizable, [5]. In the
case of n = 4 and d = 2, the following result shows that the invariant ring
H*(BT?3;F3)"42 is a polynomial ring which is realizable.

Theorem 1. Let H*(BT3;Fy) = Fa[t1, ta, t3] with deg(t;) = 2. The following
hold:

(1) H*(BT?’;FQ)W4’2 = F2[$2,$4,l‘6], where xo = t3, x4 = t% + t% + tito +
tits + tats and xg = tltg(tl +to + t3).

(2) I{*(BTB;IFQ)VV“’2 = H*(BSU(Q\) X BSl;Fg).

We define the homomorphism pg : 34 — GL(3;F2) by pa(z) = qb;lxqbd for
x € Xy. Then Im py = Wy 2 and ker po = Zy. If d = 4, on the other hand, then
pa is a faithful representation. The structure of H*(BT*;Fy)W+.4 is as follows:

Theorem 2. For n =d = 4, the following hold:

(1) H*(BT3;F)Wa4 = Fy[wa, 25, 212], where xo = t3, xg = t1 +t3 + 1343 +
1213 + 133 + t3tats + t1t5ts + titat and x12 = tita(ty +t2)(t +t3)(t2 +13) (1 +
to + t3).

(2) H*(BT?;F9)"a4 is not realizable.

We note here that, in the case of n = d, the representation W), ,, is equivalent
to the dual representation W (SU (n))*. It is known, [3], that for p > 5, the
invariant ring H*(BTP~!; FP)W(SU@))* is not polynomial. We will show some
analogous results for p = 2, 3.

Theorem 3. The following hold:
(1) Let n = 6,8. Then H*(BT" 1;F3)"W=n is not a polynomial ring.
(2) Let n =6,9. Then H*(BT" 1;F3)"V=n is not a polynomial ring.

We use a result of Dwyer—Wilkerson [3, Theorem 1.4]. Suppose that V is
a finite dimensional vector space over the field IF,, and that W is a subgroup
of Aut(V'). Let U be a subset of V', and Wy the subgroup of W consisting of
elements which fix U pointwise. Then if S(V)"" is a polynomial ring over Fp,
then Wy must be a pseudoreflection group.
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1. Invariant rings that are polynomial rings

As sated in the introduction, the representation of ¥,, = W(SU(n)) is gen-
erated by the permutation matrices X, _1 together with the following (n —1) x
(n — 1) matrix:

1 0 -1
0 1 -1
0 0 -1

We write W, q = ¢ ' W(SU(n))¢q for the following matrix ¢:
1 0

¢q =

d—1 -+ d—1 d

We will prove Theorem 1 and Theorem 2 in this section. We consider the case
of n = 4. The representation W(SU(4)) is generated by 3 reflections.

01 0 100 10 -1
W(SU(4))E4< to00]),loo0o1]|,[01 -1 >
00 1 01 0 00 -1

First take d = 2. Notice that ¢o and ¢5 1 can be expressed as follows:

100 1 00
po=| 0 1 0 |, ;' = 0 1 0
R -3 33

Consequently, the reflection group Wy o = ¢5 ' W (SU(4))¢s is generated by the

following:
010 10 0 0o -1 2
Wio = < 10 0 |, 11 2 /1, -1 0 -2 >
0 0 1 -1 0 -1 0o 0 1
d

Next consider the mo

01 0 1 0 0
Wy = < 1 0 0 |, 1 1 0 >
0 0 1 1 0 1
Hence, we see Wy o = X3 at p = 2.

We recall how to see if a ring of invariants H*(BT™;F,)" is polynomial, [4],
[7] and [8]. A set of n elements 1, xs,...,x, € H*(BT™;F,)" is said to be a

2 reduction.

w
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system of parameters if the solution of the following system of equations

1'1(t1,t2,. ..,tn)
$2(t1)t2) L 7tn)

0
0

zn(tl,tg,. ..,tn) =0

is trivial. Namely ¢ =ty = --- =t,, = 0. As usual, we write H*(BT™;F,) =
Fplt1,t2,...,tn]. Let d(z) denote 3deg(x) so that d(t;) = 1 for 1 < i < n.
According to [8, Proposition 5.5.5], for a finite group W, if we can find a system
of parameters {z1,x2,...2,} with [[/_, d(x;) = |[W|, then H*(BT™;F,)"V =
Fplz1, 22, ... 2p).

Proof of Theorem 1. (1) Suppose zo = t3, T4 = t3 + 3 + t1tg + t1ts + tot3
and xg = t1ta(t1 + t2 + t3). It is easy to check that the element xo, 4, xg
are Wy o-invariant, and that {z2,z4,26} is a system of parameters. Conse-
quently H*(BT?F5)"42 is the polynomial ring generated by xo, x4 and xs,
since |W412| =6= d(SCQ) . d($4) . d(l‘g)

(2) Recall that the mod 2 reduction of Wy,

2 is generated by A and B, where

010 100 110 .

A= (100) and B = (1 10). Let ¢ = (100). Then a calculation shows
001 101 011

) 110 010
A=y A= 01 0 | andB=9"'By=[ 1 0 0
00 1 00 1

Hence, both matrices A and B are elements of W (SU(3)) x W(S!). No-
tice that the mod 2 reduction of W(SU(3)) is generated by (¢}) and (§1).
This means that Wy 5 is equivalent to W (SU(3)) x W(S1). Therefore, we see
H*(BT3;Fy)Wi2 o H*(BT3;F,)WSUG)W(SY) — H*(BSU(3) x BS':Fy).
This completes the proof. (I

. 100
Next consider the case of d = 4. For ¢4 = (g%g), we see Wyy =

¢ "W (SU(4))¢ps. The reflection group Wy, is generated by the matrices

010 10 0 -2 -3 -4 . ..
(1 0 0), ( 3 3 4 ) and (—3 -2 —4). Hence its mod 2 reduction is as fol-
001 -3 2 -3 3 3 5

lows:
01 0 1 0 0 01 0
W474< 1 0 0 , 1 1 0 , 1 0 0 >
0 0 1 1 0 1 1 1 1

Proof of Theorem 2. (1) Notice that {x9,xs,z12} is a system of parameters.
Furthermore |Wy 4| = 24 = d(z2) - d(xg) - d(z12). An argument similar to the
one in Theorem 1 shows the desired result.
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(2) If the unstable algebra H*(BT?;F5)"4 is realizable, there is a 2-compact
group X such that H*(BT3;Fy)W+1 =2 H*(BX;Fy). Since the polynomial alge-
bra is generated by even-degree elements, the classifying space BX is 2-torsion
free. So the 2-adic cohomology is also a polynomial algebra generated by el-
ements of the same degree. We can find, [1], a compact connected Lie group
G such that H*(BX;Z45) = H*(BG;Z%). However, any Lie group G does not
satisfy the condition that H*(BG;F3) = Falxa, xs, 212], since this cohomol-
ogy does not contain a generator of degree 4. Thus, H*(BT3;F)"4.1 is not
realizable. [l

Remark 1.1. Recall that in the case of n = d, the representation W, , is
equivalent to the dual representation W (SU(n))*. In fact, for the following
(n—1) x (n — 1) matrix,

2 1 1

1 2 1
¢ = :

1 1 2

we see [5] that ¢~lo¢ = to for each of the generators o of the reflection group
Y,—1. We claim that ¢7!%,_1¢ = X% ;. Consequently, we see ¥~ W, 1 =
W(SU(n))" for ¢ = 6,16,

2. Non-polynomial cases

We will prove Theorem 3 in this section. To do so, we need a few basic
results. As sated before, according to a result of Dwyer-Wilkerson, we will find a
subset U such that the subgroup Wy is not generated by pseudoreflections. The
representation W (SU(n)) as a subgroup of GL(n — 1,F,) is generated by the
permutation representation of ¥,,_; together with the following (n—1) x (n—1)
matrix:

1 0 -1
0 1 -1
0 -~ 0 —1

In other words, if we let Y t; = 0, then the representation of W (SU(n))
can be regarded as the permutation representation of ¥%,,. For instance, when

n = 4, the transposition (1,2) corresponds to the matrix (g El)) %), (2,3) to

100 10 -1 . . . .
(8 0 5), and (3,4) to (8 é —} ), respectively. We will use this convention.

Proof of Theorem 3. (1) First we consider the case of n = 6. Let = = (1,1, 1,
0,0) and y = (1,1,0,1,1), and let U = {x,y}. Recall that any element of

W(SU(6)) is a 5 x 5 matrix such that each column is one of the set of the
standard basis {e1, €2, €3, €4, €5} and the vector b =*(1,1,1,1,1), since p = 2.
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Take a matrix A = (a1, a2, as,a4,as) € W(SU(6)) such that Az = x. Notice
that Ax = a1 + a2 + az and * = e; + es + e3. If the first column a is eq,
then b & {as,as}, and hence {az,as} = {es, es}. Similarly, if a; = ey, then
one can show {as,as} = {es,b}. It turns out that all possible combinations
are either

{ai,as,a3} = {e1, ez, e3} and {a4,a5} C {eq,e5,b}
or

{ai,a2,a3} = {e4, e5,b} and {a4,a5} C {e1,e2,e3}.
Furthermore, we have Ay = y if A € Wy. Again, notice that Ay = a1 + as +
as+as and y = e; +es+ e4+e5. One can show that az = ez or b, and hence
Wy =2 Dg as follows:

B e, (1,2), (4,5), (1,2)(4,5)
WU{(1,4)(2,5)(3,6), (1,5,2,4)(3,6), (1,4,2,5)(3,6), (1,5)(2,4)(,6)}'

Here we regard, for example, as follows:
(1,2) = (e2, e1,e3,€e4,e5) and (1,5,2,4)(3,6) = (e5,e4,b, e1, €2).

Since Wy is not a pseudoreflection group, we see that H*(BT?;F3)"e:s is not
a polynomial ring by [3].

Next consider the case of n = 8. Let U = {z,y, z} forx = ¥(1,1,1,1,0,0,0),
y =%1,1,0,0,1,1,0) and z = ¥(1,0,1,0,1,0,1). Any element of W (SU(8))
is a 7 X 7 matrix such that each column is one of the set of the standard
basis {e1,es,...,e7} and the vector b = (1,1,1,1,1,1,1). Take a matrix
A= (ay,as,...,a7) € W(SU(8)) such that Az = x. If the first column a; is
ey, then {as, a3, a4} = {eq, e3,e4}. Similarly, if a; = e, then {aq,as, a4} =
{es, e7,b}. All possible combinations are either

{ala asz, as, a4} - {ela €2, €3, 64} a'nd {a5) Qg, 0/7} - {653 €g, €7, b}
or
{a1,a2,a3,a4} = {e5, e5,e7,b} and {as,aq,ar} C {e1,e2,€3,e4}.
Furthermore, we have Ay = y and Az = z if A € Wy. One can show that Wy
is expressed as follows:
Wy = Z/2(a) x Z/2(B) x Z/2(y),

where a = (1,2)(3,4)(5,6)(7,8), 8 = (1,3)(2,4)(5,7)(6,8) and = (L,5)(2,6)
(3,7)(4,8). This group is not a pseudoreflection group, hence H*(BT7;Fy)Ws:s
is not a polynomial ring.

(2) We consider the case of n = 6 at p = 3. Let U = {a,y} for ¢ =
*(1,1,-1,-1,0)and y = (1, —1,0,1, —1). Take a matrix A= (a1, az, as, as, as)
€ W(SU(6)) such that Az = z. It the first column a; is e;, then as = es.

Similarly, if a3 = es, then as = e4, and if a; = es, then as = b. Here
b="-1,-1,-1,—1,—1). One of the following holds:

{a1,a2} = {e1,e2},{as,as} = {es,es} and a5 € {es, b}
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or

{ai,a2} = {es,es},{as,as} = {e5,b} and a; € {e1, ea}
or

{ai,a2} = {es5,b},{as,as} = {e1,es} and as € {e3,e4}.
Furthermore, we have Ay = y if A € Wy. It follows that

Wy =Z/3(a),

where o = (1,3,5)(2,4,6). Therefore, this group is not a pseudoreflection
group, and hence H*(BT?;F3)"¢¢ is not a polynomial ring.

Next consider the case of n = 9. Let U = {z,y} forx = (1,1,1,-1,—-1, -1,
0,0) and y = %(1,-1,0,1,—1,0,1, —1). Take a matrix A = (a1,as,...,as) €
W(SU(9)) such that Az = x. It the first column a; is e, then we obtain
{az,a3} = {eaz,e3}. Similarly, if a1 = e4, then {as,a3} = {es, es}, and if
a; = e, then {az,a3} = {es,b}. Here b="*(-1,-1,-1,-1,—-1,-1,—1,-1).
We see that one of the following holds:

{a1,a2,a3}={e1, ez, e3},{aq,as,a6} ={es,e5,es} and {ar,as} C {e7, es, b}
or

{a1,a2,a3}={eq,e5,e5},{aq,as,a6}={er,es,b} and {ar,as} C {e1, es,e3}
or

{a1,aq2,a3}={er,es,b},{as,as,a6}={e1,es,es} and {ar,as} C{e4,e5,e5}.
Furthermore, we have Ay = y if A € Wy. Consequently, we see that

Wy = Z/3{a) x Z/3(B),

where o = (1,2,3)(4,5,6)(7,8,9) and 5 = (1,4,7)(2,5,8)(3,6,9). Once again
H*(BT®8;F3)"2 is not a polynomial ring. O

Remark 2.1. In the proof of Theorem 3, we have found subgroups Wy which
are not pseudoreflection groups. In the case of n = 6 and p = 2, the group Wy
can be made smaller. Namely, if z = ¥(1,0,1,0,1) and U = {z,y, 2}, then Wy
can be expressed as follows:

Wy = Z/2<Oé>,
where o = (1,4)(2,5)(3,6). This is not a pseudoreflection group.
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