Browse > Article
http://dx.doi.org/10.5666/KMJ.2010.50.1.001

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings  

Dobbs, David Earl (Department of Mathematics, University of Tennessee)
Publication Information
Kyungpook Mathematical Journal / v.50, no.1, 2010 , pp. 1-5 More about this Journal
Abstract
Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = >, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.
Keywords
Commutative ring; prime ideal; polynomial ring; upper; integral domain; factor ring; degree;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 T. Albu, On a paper of Uchida concerning simple finite extensions of Dedekind domains, Osaka J. Math., 16(1979), 65-69.
2 A. Bouvier, D. E. Dobbs and M. Fontana, Universally catenarian integral domains, Adv. Math., 72(1988), 211-238.   DOI
3 D. E. Dobbs and M. Fontana, Universally incomparable ring-homomorphisms, Bull. Austral. Math. Soc., 29(1984), 289-302.   DOI
4 D. E. Dobbs and J. Shapiro, A classification of the minimal ring extensions of an integral domain, J. Algebra, 305(2006), 185-193.   DOI   ScienceOn
5 I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.
6 S. McAdam, Going down in polynomial rings, Can. J. Math., 23(1971), 704-711.   DOI
7 K. Uchida, When is Z[$\alpha$] the ring of integers?, Osaka J. Math., 14(1977), 155-157.
8 H. Uda, Incomparability in ring extensions, Hiroshima Math. J., 9(1979), 451-463.