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GENERALIZED SELF-INVERSIVE BICOMPLEX

POLYNOMIALS WITH RESPECT TO THE j-CONJUGATION

Yutaka Matsui and Yuhei Sato

Abstract. In this paper, we study a kind of self-inversive polynomials

in bicomplex algebra. For a bicomplex polynomial, this is the study of
a relation between a kind of symmetry of its coefficients and a kind of

symmetry of zeros. For our deep study, we define several new levels of
self-inversivity. We prove some functional equations for standard ones, a

decomposition theorem for generalized ones and a comparison theorem.

Although we focus the j-conjugation in our study, our argument can be
applied for other conjugations.

1. Introduction

It is well-known that for a polynomial f there is a relation between a kind
of symmetry of coefficients of f and a kind of symmetry of zeros. For example,
let us consider a complex polynomial f(z) =

∑n
m=0 amz

m of degree n in one
variable. A real polynomial, whose coefficients have a symmetry am = am
(m = 0, 1, . . . , n) with respect to the complex conjugation, has a symmetry of
zeros, that f(c) = 0 implies f(c) = 0. Also, a self-reciprocal polynomial, whose
coefficients have a symmetry am = an−m (m = 0, 1, . . . , n), has a symmetry of
zeros, that f(c) = 0 implies f

(
1
c

)
= 0. Combining these two symmetries, we

obtain the notion of self-inversivity. A self-inversive polynomial, whose coeffi-
cients have a symmetry anam = a0an−m (m = 0, 1, . . . , n), has a symmetry of
zeros with respect to the unit circle, that f(c) = 0 implies f

(
1
c

)
= 0. It has

been important to study these polynomials in the theory of the error correcting
codes and analytic number theory for a long time. See [5, 7] and Section 2.1
for more details. In this paper, we study a kind of self-inversive polynomial in
bicomplex algebra.

Bicomplex algebra was introduced by Segre [8] inspired by the work of Hamil-
ton on quaternions and defined by

BC = {z1 + z2j | z1, z2 ∈ C},

Received July 13, 2020; Revised November 18, 2020; Accepted December 9, 2020.

2010 Mathematics Subject Classification. Primary 30G35, 13B25.
Key words and phrases. Bicomplex analysis, self-inversive polynomial.

c©2021 Korean Mathematical Society

885



886 Y. MATSUI AND Y. SATO

where j is another imaginary unit commuting with the imaginary unit i of C.
In particular, BC is a commutative complex Clifford algebra. Since BC is not
an integral domain, the study of zeros of a bicomplex polynomial is not easy.
For example, the factorization of polynomials is not unique and the number of
zeros of a monic bicomplex polynomial of degree n is n2. See [4] and Sections
2.2 and 2.3 for more details. See [6] for recent developments in this area. In
this algebra, conjugations with respect to i, j and ij are defined by z1 + z2j,
z1− z2j and z1− z2j, respectively. Corresponding to each conjugation, we can
define the notion of self-inversivity for bicomplex polynomials.

In this paper, we study self-inversive bicomplex polynomials with respect to
the j-conjugation. Since the study of bicomplex polynomials is more difficult
than that of the complex polynomials, we need to define several levels of self-
inversivity. First, we study the relation between the symmetry of coefficients
and the symmetry of zeros. Second, we prove the decomposition theorem for
generalized self-inversive polynomials. Finally, we prove a comparison theorem.
See Section 3 for more details. For self-inversive polynomials with respect to
other conjugations, such as the i-conjugation, our argument can be applied.
See Remark 3.9. Note that the ij-conjugation case was partially studied in [1].

This paper is organized as follows. In Section 2.1, we review the relation be-
tween a symmetry of coefficients and a symmetry of zeros for self-inversive com-
plex polynomials. In Sections 2.2 and 2.3, we recall very briefly the definition
and fundamental properties of bicomplex numbers and bicomplex polynomials,
respectively. Section 3 is the main part of this paper. After defining several
new levels of self-inversivity of bicomplex polynomials, we discuss properties of
them. Finally, Section 4 contains the conclusion.

2. Preliminaries

2.1. Self-inversive complex polynomials

In this subsection, we review the relation between a symmetry of coefficients
and a symmetry of zeros for self-inversive complex polynomials. In this paper,
we define the notion of self-inversivity by a strong symmetry of zeros. See [5,7]
for more details.

Definition. Let f be a complex polynomial of degree n in one variable with
the multiset of zeros {c1, . . . , cn} in C. We say that f is self-inversive if the

equality {c1, . . . , cn} =
{

1
c1
, . . . , 1

cn

}
holds as a multiset. Here the bar means

the complex conjugation.

Note that the condition of zeros in Definition above is stronger than the
property that f(c) = 0 implies f( 1

c ) = 0. A fundamental property of self-
inversive polynomials is as follows.

Theorem 2.1. Let f(z) =
∑n
m=0 amz

m (an 6= 0) be a complex polynomial of
degree n. The following four conditions are equivalent:
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(i) f is self-inversive,
(ii) anam = a0an−m (m = 0, 1, 2, . . . , n),

(iii) anf(z) = a0z
nf

(
1

z

)
(z ∈ C \ {0}),

(iv) an(nf(z)− zf ′(z)) = a0z
n−1f ′

(
1

z

)
(z ∈ C \ {0}) and |an| = |a0|.

An aim of this paper is to study these conditions for bicomplex polynomials.
See Theorem 3.2 below.

2.2. Bicomplex numbers

In this subsection, we recall the definition and fundamental properties of
bicomplex numbers. See [3, 4] for more details.

Let C be the field of complex numbers with the imaginary unit i. The set
of bicomplex numbers is defined by

BC = {Z = z1 + z2j | z1, z2 ∈ C},
where j is another imaginary unit independent of and commuting with i:

i 6= j, ij = ji, i2 = j2 = −1.

Defining the addition and multiplication naturally, BC has a structure of a
commutative ring. The set of zero divisors of BC with 0 is described as

S0 = {Z = z1 + z2j ∈ BC | z21 + z22 = 0},
that is equal to the set of non-unit elements of BC. Setting

e =
1 + ij

2
, e† =

1− ij
2

,

e and e† are the non-complex idempotent elements satisfying the property
ee† = 0.

We define the surjective ring homomorphisms Φe : BC −→ C, Φe† : BC −→ C
by

Φe(Z) = z1 − z2i, Φe†(Z) = z1 + z2i

for Z = z1 + z2j ∈ BC, respectively. Then any bicomplex number Z has the
idempotent representation

Z = Φe(Z)e + Φe†(Z)e†.

In this paper, we denote Φe(Z) and Φe†(Z) by Ze and Ze† , respectively. By
the idempotent representation, we have the equality

S0 = {Z = Zee + Ze†e† ∈ BC | ZeZe† = 0} = Ce ∪ Ce†.

For Z = z1 + z2j = Zee + Ze†e† ∈ BC, we define three conjugations by

Z̄ = z1 + z2j = Ze†e + Zee
†,

Z† = z1 − z2j = Ze†e + Zee
†,
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Z∗ = z1 − z2j = Zee + Ze†e†

with respect to i, j, ij, respectively. These operations are involutive ring auto-
morphisms.

2.3. Bicomplex polynomials

In this subsection, we recall fundamental properties of bicomplex polynomi-
als. See [3, 4] for more details.

For a bicomplex polynomial P , Φe(P (Z)) and Φe†(P (Z)) are considered as
complex polynomials in one variable, denoted by Pe(Ze), Pe†(Ze†), respectively.
Then we have the idempotent representation of the polynomial P :

(2.1) P (Z) = Pe(Ze)e + Pe†(Ze†)e†.

Note that the factorization of bicomplex polynomials is not unique but the
idempotent representation is unique. By the idempotent representation, we
define the two notions of zeros for bicomplex polynomials.

Definition. Let P be a bicomplex polynomial.

(i) We say that α ∈ BC is a strong zero of P if P (α) = 0 holds, equivalently
Pe(αe) = Pe†(αe†) = 0 holds.

(ii) We say that α ∈ BC is a weak zero of P if P (α) ∈ S0 holds, equivalently
Pe(αe)Pe†(αe†) = 0 holds.

Note that a strong zero of P is a weak zero of P . See Example 3.1 below
for examples of bicomplex polynomials. The following lemmas play important
roles in our study.

Lemma 2.2. Let P be a bicomplex polynomial.

(i) If α, β are weak zeros of P satisfying P (α) ∈ Ce† and P (β) ∈ Ce, then
αe + βe† is a strong zero of P , that is P (αe + βe†) = 0.

(ii) If α is a strong zero of P , that is P (α) = 0, then for any γ ∈ BC,
αe+γe†, γe+αe† are weak zeros of P satisfying P (αe+γe†) ∈ Ce†and
P (γe + αe†) ∈ Ce.

Lemma 2.3. Let P be a bicomplex polynomial. If P has no strong zero, then
either the complex polynomial Pe or Pe† is non-zero constant.

3. j-self-inversive bicomplex polynomials

In this section, we study self-inversive bicomplex polynomials with respect
to the j-conjugation. In this paper, we define the notion of self-inversivity by
a symmetry of zeros. However, since in bicomplex algebra the factorization
of polynomials is not unique, it is not easy to give a similar definition to the
complex case. Thus we will define several levels for self-inversivity. Since it
plays an important role to consider invariant elements by the operation 1

Z† , we
set

S† = {Z ∈ BC | ZZ† = 1} = {Z ∈ BC | ZeZe† = 1}.
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Definition. Let P be a bicomplex polynomial.

(i) We say that P is generalized self-inversive with respect to the j-conj-
ugation (generalized j-self-inversive) if P has at least one strong zero,

and P (γ) = 0 implies γ /∈ S0 and P
(

1
γ†

)
= 0.

(ii) We say that P is weakly self-inversive with respect to the j-conjugation
(weakly j-self-inversive) if P has at least one weak zero except S0, and

P (γ) ∈ S0 and γ /∈ S0 imply P
(

1
γ†

)
∈ S0.

(iii) We say that P is strictly self-inversive with respect to the j-conjugation
(strictly j-self-inversive) if there exist α ∈ BC\S0, α1, . . . , αp ∈ S† and
`1, . . . , `p ∈ N such that P has a factorization

P (Z) = α(Z − α1)`1 · · · (Z − αp)`p .

A generalized (resp. weakly) j-self-inversive polynomial has a symmetry of
strong (resp. weak) zeros with respect to S†. A strictly j-self-inversive polyno-
mial has a symmetry of coefficients with respect to the j-conjugation, which we
will see Theorem 3.2 below. In general, a strictly j-self-inversive polynomial is
generalized j-self-inversive by Lemma 2.2.

Example 3.1.

(i) P (Z) = Z3 −
(
13
3 e + 13

2 e†
)
Z2 +

(
16
3 e + 12e†

)
Z − 4

3e− 9
2e† is a gener-

alized j-self-inversive polynomial. In fact, the strong zeros of P are

1

3
e +

1

2
e†,

1

3
e + 3e†, 2e +

1

2
e†, 2e + 3e†

(multiplicities are 1, 2, 2, 4, respectively). P is also a weakly j-self-
inversive polynomial. In fact, the weak zeros of P are

1

3
e + ce†, 2e + ce†, ce +

1

2
e†, ce + 3e† (c ∈ C).

(ii) Q(Z) = Z2 −
(
7
3e + 7

2e†
)
Z +

(
2
3e + 3

2e†
)

is a strictly j-self-inversive
polynomial. In fact, Q has a factorization

Q(Z) =

(
Z −

(
2e +

1

2
e†
))(

Z −
(

1

3
e + 3e†

))
.

Note that Q has another factorization

Q(Z) =
(
Z −

(
2e + 3e†

))(
Z −

(
1

3
e +

1

2
e†
))

.

Q is also a generalized j-self-inversive polynomial. In fact, the strong
zeros of Q are

1

3
e +

1

2
e†,

1

3
e + 3e†, 2e +

1

2
e†, 2e + 3e†

(multiplicities are 1, 1, 1, 1, respectively).
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First, we study the property of strictly j-self-inversive polynomials. Since
the notion of strict j-self-inversivity corresponds to the one of complex self-
inversivity, we obtain a result similar to Theorem 2.1 in the bicomplex case.

Theorem 3.2. Let P (Z) =
∑n
m=0AmZ

m be a bicomplex polynomial of degree
n ≥ 1 with An /∈ S0. The following four conditions are equivalent:

(i) P is strictly j-self-inversive,

(ii) A†nAm = A0A
†
n−m (m = 0, 1, 2, . . . , n),

(iii) A†nP (Z) = A0Z
n

(
P

(
1

Z†

))†
(Z ∈ BC \S0),

(iv) A†n(nP (Z) − ZP ′(Z)) = A0Z
n−1

(
P ′
(

1

Z†

))†
(Z ∈ BC \ S0) and

A†nAn = A0A
†
0.

Proof. Since by P (Z) =
∑n
m=0AmZ

m we have

A0Z
n

(
P

(
1

Z†

))†
=

n∑
m=0

A0A
†
mZ

n−m,

A†n(nP (Z)− ZP ′(Z)) =

n∑
m=0

(n−m)A†nAmZ
m,

A0Z
n−1

(
P ′
(

1

Z†

))†
=

n∑
m=0

mA0A
†
mZ

n−m,

we obtain the equivalence among (ii), (iii), (iv). Note that the functional
equation of (iv) is also obtained by differentiating the functional equation (iii).
In fact, by differentiating the functional equation (iii) we obtain

A†nP
′(Z) = nA0Z

n−1
(
P

(
1

Z†

))†
−A0Z

n−2
(
P ′
(

1

Z†

))†
.

By (iii) again, we obtain the functional equation of (iv).
Let us prove the equivalence between (i) and (iii). Assume that P is strictly

j-self-inversive. Then there exist α ∈ BC \S0, α1, . . . , αp ∈ S† and `1, . . . , `p ∈
N such that P has a factorization

(3.1) P (Z) = α(Z − α1)`1 · · · (Z − αp)`p .

By (3.1) and the equalities An = α, A0 = (−1)nαα`11 · · ·α
`p
p , we have

A0Z
n

(
P

(
1

Z†

))†
= A0Z

nα†
(

1

Z
− α†1

)`1
· · ·
(

1

Z
− α†p

)`p
= (−1)`1+···+`pαα`11 · · ·α`pp ZnA†n

(
1

Z
− 1

α1

)`1
· · ·
(

1

Z
− 1

αp

)`p
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= A†nα(Z − α1)`1 · · · (Z − αp)`p

= A†nP (Z).

Conversely, we assume the functional equation (iii). Comparing with the
coefficient of degree n of (iii), we have A0 /∈ S0. Since a strong zero of P is a
divisor of A0 /∈ S0, P has no strong zero on S0. Since An /∈ S0 and n ≥ 1,
there exists a strong zero γ /∈ S0 of P . By (iii), 1

γ† is also a strong zero of P .

Setting

γ̃ = γe +
1

γ†
e† = γee +

1

γe
e†

or

γ̃ =
1

γ†
e + γe† =

1

γe†
e + γe†e†,

γ̃ is also a strong zero of P and γ̃ ∈ S†. By the factorization theorem, there

exist a positive integer ` and a polynomial P̃ such that

P (Z) = (Z − γ̃)`P̃ (Z), P̃ (γ̃) 6= 0.

By (iii), P̃ satisfies the functional equation

A†nP̃ (Z) =
(−1)`A0

γ̃`
Zn−`

(
P̃

(
1

Z†

))†
.

By repeating this procedure, there exist α1, . . . , αp ∈ S†, `1, . . . , `p ∈ N and a
polynomial R such that P has a factorization

P (Z) = (Z − α1)`1 · · · (Z − αp)`pR(Z),

where R has no strong zero. Since the coefficient of the highest degree of
R is An /∈ S0, R is constant by Lemma 2.3. Therefore P is strictly j-self-
inversive. �

By Theorem 3.2, for a strictly j-self-inversive polynomial P we obtain the
explicit relation between Pe and Pe† .

Corollary 3.3. For any non-constant complex polynomial f , there exists a
unique strictly j-self-inversive bicomplex polynomial P such that Pe = f (resp.
Pe† = f).

Next, we study generalized j-self-inversive polynomials. We show that any
generalized j-self-inversive polynomial P has a strictly j-self-inversive factor
determined uniquely by only P .

Theorem 3.4. Let P be a generalized j-self-inversive bicomplex polynomial.

(i) There exist distinct bicomplex numbers α1, . . . , αp ∈ S†, positive inte-
gers `1, . . . , `p ∈ N and a polynomial R such that P has a factorization

(3.2) P (Z) = Q(Z)R(Z),

where Q is strictly j-self-inversive

Q(Z) = (Z − α1)`1 · · · (Z − αp)`p ,
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and the quotient polynomial R has the property

(3.3) R(γ) = 0 =⇒ R

(
1

γ†

)
/∈ S0.

(ii) The set α1, . . . , αp and `1, . . . , `p in (i) is uniquely determined by P .
(iii) If γ is a strong zero of R, then γ is also a strong zero of Q.

Proof. (i) We can prove (i) similarly to the proof of Theorem 3.2. Assume
that a polynomial P has strong zeros γ and 1

γ† . Setting γ̃ = γe + 1
γ† e† or

γ̃ = 1
γ† e + γe†, γ̃ is also a strong zero of P and satisfies γ̃ ∈ S†. By the

factorization theorem, there exist a positive number ` and a polynomial P̃
such that we have P (Z) = (Z− γ̃)`P̃ (Z) and P̃ (γ̃) 6= 0. If there exists a strong

zero γ′ of P̃ such that 1
γ′† is a weak zero of P̃ , we could repeat this procedure.

Therefore we get a factorization (3.2) with the property (3.3).
(ii) Suppose that we have two factorizations

P (Z) = Q1(Z)R1(Z) = Q2(Z)R2(Z).

Here

Q1(Z) = (Z − α1)`1 · · · (Z − αp)`p , Q2(Z) = (Z − β1)m1 · · · (Z − βq)mq ,

α1, . . . , αp ∈ S† and β1, . . . , βq ∈ S† are sets of distinct strong zeros of P ,
`1, . . . , `p and m1, . . . ,mq are positive integers and R1, R2 are polynomials sat-
isfying the property (3.3). By P (α1) = 0, we have Q2(α1)R2(α1) = 0.

(ii-a) In the case where Q2(α1) /∈ S0, we have R2(α1) = 0. By α1 ∈ S†, we

have R2

(
1

α†
1

)
= 0. This contradicts (3.3).

(ii-b) In the case where Q2(α1) ∈ S0, there exists a number r such that
βre = α1e or βre† = α1e† . By α1, βr ∈ S†, we have r = 1 and α1 = βr.

We may assume α1 = β1. By the same argument as (ii-b), we obtain `1 =
m1. By repeating this argument, we obtain p = q, {α1, . . . , αp} = {β1, . . . , βq}
and `r = mr (r = 1, 2, . . . , p).

(iii) Let γ be a strong zero of R. By (3.2), γ is a strong zero of P . Since
P is generalized j-self-inversive, γ /∈ S0 and 1

γ† is also a strong zero of P .

By R
(

1
γ†

)
/∈ S0 and (3.2), we have Q

(
1
γ†

)
= 0. Since Q is generalized

j-self-inversive, we obtain Q(γ) = 0. �

Remark 3.5. In Theorem 3.4(iii), we also prove the following properties: R(γ) ∈
Ce implies Q(γ) ∈ Ce, and R(γ) ∈ Ce† implies Q(γ) ∈ Ce†, since Q is strictly
j-self-inversive. We omit the detailed proof.

Example 3.6. In Example 3.1, P has a factorization

P (Z) =

(
Z −

(
2e +

1

2
e†
))(

Z −
(

1

3
e + 3e†

))(
Z −

(
2e + 3e†

))
.
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The strong zero of R(Z) = Z − (2e + 3e†) is only 2e + 3e†. Then we have

R

(
1

3
e +

1

2
e†
)

= −5

3
e− 5

2
e† /∈ S0.

Finally, we compare two notions of the weak and generalized j-self-invers-
ivity.

Theorem 3.7. Let P be a bicomplex polynomial. The following (i) and (ii)
are equivalent:

(i) P is weakly j-self-inversive, P has a strong zero and P has no strong
zero on S0,

(ii) P is generalized j-self-inversive.

Proof. Assume the condition (i). Since neither Pe nor Pe† are constant, we
may suppose that the weak zeros of P are described as are + ce†, ce + bse

†

for some ar, bs ∈ C (r = 1, 2, . . . , p, s = 1, 2, . . . , q) and any c ∈ C. Then the
strong zeros of P are described as are + bse

† (r = 1, 2, . . . , p, s = 1, 2, . . . , q).
Since P has no strong zero on S0, ar, bs 6= 0 (r = 1, 2, . . . , p, s = 1, 2, . . . , q).
By the weak j-self-inversivity of P , 1

ce + 1
ar

e† and 1
bs

e + 1
ce
† are also weak

zeros of P for any c ∈ C\{0}. Then 1
bs

e+ 1
ar

e† (r = 1, 2, . . . , p, s = 1, 2, . . . , q)
are also strong zeros of P . Therefore P is generalized j-self-inversive.

Conversely, assume the condition (ii). By the definition of the generalized
j-self-inversivity, P has a strong zero and P has no strong zero on S0. In
particular, neither Pe nor Pe† are constant. We may suppose that the strong
zeros of P are described as are + bse

† (r = 1, 2, . . . , p, s = 1, 2, . . . , q). Then
the weak zeros of P are described as are + ce†, ce + bse

† for any c ∈ C
(r = 1, 2, . . . , p, s = 1, 2, . . . , q). Since 1

bs
e + 1

ar
e† is also a strong zero by the

generalized j-self-inversivity, 1
ce + 1

ar
e† and 1

bs
e + 1

ce
† are also weak zeros of P

for any c ∈ C \ {0}. Therefore P is weakly j-self-inversive. �

Remark 3.8. For example, Z(Z − 1), eZ − ij and e are weakly j-self-inversive,
but neither of these are generalized j-self-inversive.

Remark 3.9. In BC, there exist eight involutive ring automorphisms σ : BC −→
BC in total. For each σ, we can define the notion of “self-inversive bicom-
plex polynomials with respect to σ” by replacing the j-conjugation with the
σ-action. We can obtain the same results in this section for self-inversive poly-
nomials with respect to σ(Z) = Ze†e +Zee

† (the i-conjugation), Ze†e +Zee
†,

Ze†e + Zee
† by parallel arguments. Moreover, we could obtain similar the-

orems for self-inversive polynomials with respect to σ(Z) = Z, Zee + Ze†e†

(the ij-conjugation), Zee + Ze†e†, Zee + Ze†e†, which are proved directly by
the idempotent representation (2.1) of bicomplex polynomials and properties
of self-inversive and self-reciprocal complex polynomials. A result similar to
Theorem 3.2 in the ij-conjugation case was obtained in [1].
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4. Conclusion

We summarize this paper as follows:

• In this paper, we defined the notion of self-inversivity for bicomplex
polynomials by a symmetry of zeros. However, since in bicomplex
algebra the factorization of polynomials is not unique, it is not easy to
give a similar definition to the complex case. We defined new several
levels of self-inversivity with respect to j-conjugation: a generalized
one, a weak one and a strict one.

• We proved some functional equations and relations of coefficients, which
characterize strictly j-self-inversive bicomplex polynomials. This result
corresponds to the similar result to the complex self-inversive polyno-
mials.

• We proved that any generalized j-self-inversive bicomplex polynomial
has a strictly j-self-inversive factor determined uniquely by it.

• We proved the relation between generalized j-self-inversive bicomplex
polynomials and weakly j-self-inversive bicomplex polynomials.

• Although we focused the j-conjugation in our study, our argument can
be applied for other conjugations.

For further research, we expect that our study could have good applications
to the theory of error correcting codes and analytic number theory, similar to
complex self-inversive polynomials in [2].

Acknowledgement. The authors would like to express our gratitude to Pro-
fessor K. Ihara and the referee for several useful comments.
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