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SOME UMBRAL CHARACTERISTICS OF THE

ACTUARIAL POLYNOMIALS

Eun Woo Kim* and Yu Seon Jang**

Abstract. The utility of exponential generating functions is that
they are relevant for combinatorial problems involving sets and sub-
sets. Sequences of polynomials play a fundamental role in applied
mathematics, such sequences can be described using the exponen-

tial generating functions. The actuarial polynomials a
(β)
n (x), n =

0, 1, 2, · · · , which was suggested by Toscano, have the following ex-
ponential generating function:

∞∑
n=0

a
(β)
n (x)

n!
tn = exp(βt+ x(1 − et)).

A linear functional on polynomial space can be identified with a
formal power series. The set of formal power series is usually given
the structure of an algebra under formal addition and multiplica-
tion. This algebra structure, the additive part of which agree with
the vector space structure on the space of linear functionals, which
is transferred from the space of the linear functionals. The algebra
so obtained is called the umbral algebra, and the umbral calculus is
the study of this algebra. In this paper, we investigate some umbral
representations in the actuarial polynomials.

1. Introduction

Let V1 and V2 be linear spaces over the same field F . A mapping T :
V1 → V2 from V1 to V2 is said to be a linear transformation, sometimes
linear operation, if for any u, v ∈ V1 and a, b ∈ F
(1.1) T (au+ bv) = aT (u) + bT (u).

The collection of all linear transformations from V1 to V2 will be denoted
by L(V1, V2). When V is a linear space over F , the linear transformations
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from V to F are called the linear functionals on V (see [5]). The linear
functional T from V to F is in L(V, F ). Let F [ω] be the algebra of all
polynomials in a single variable ω over F . Then an element p(ω) in F [ω]
can be written uniquely as a finite sum

(1.2) p(ω) = a0 + a1ω + a2ω
2 + · · ·+ anω

n

for some nonnegative integer n and a0, a1, · · · , an ∈ F with an 6= 0.
The degree of p(ω) is defined by n and is denoted deg(p(ω)) = n. The
set L(F [ω], F ) of all linear functionals on F [ω] is linear space which is
usually thought of as a vector space over F (see [2]).

Consider an operator 〈·|·〉 : L(F [ω], F ) × F [ω] → F such that for all
p(ω) ∈ F [ω] and for all T, S ∈ L(F [ω], F )

(1.3) 〈T + S|p(ω)〉 = 〈T |p(ω)〉+ 〈S|p(ω)〉,

(1.4) 〈cT |p(ω)〉 = c〈T |p(ω)〉,

where c ∈ F . For any nonnegative integer n there exists polynomial
pn(ω) in F [ω] with deg(p(ω)) = n, thus the linear functional T is
uniquely determined by the sequence of constants 〈T |ωn〉 (see [4]). Oc-
casionally, the value of its evaluation has 〈T |pn(ω)〉 = sn(x) for some
sn(x) ∈ F [x].

Let F [[t]] be the set of all formal power series in the variable t over
field F . An element of F [[t]] has the form

(1.5) f(t) =
∞∑
n=0

ant
n

for an ∈ F . Two formal power series are equal if and only if the coef-
ficients of like powers of t are equal. If addition and multiplication are
defined by

(1.6)
∞∑
n=0

ant
n +

∞∑
n=0

bnt
n =

∞∑
n=0

(an + bn)tn,

(1.7)

( ∞∑
n=0

ant
n

)( ∞∑
n=0

bnt
n

)
=
∞∑
n=0

(
n∑
k=0

akbn−k

)
tn,

then F [[t]] is a ring (see [2]). It is well known that a linear functional
on F [ω] can be identified with a formal power series. In fact, there is



Some umbral characteristics of the actuarial polynomials 75

a one-to-one correspondence between L(F [ω], F ) and F [[t]]. A formal
power series

(1.8) fT (t) =
∞∑
n=0

an
n!
tn

is defined by a linear functional T on F [ω] by setting

(1.9) 〈T |ωn〉 = an

for all n ≥ 0. Thus we have

(1.10) fT (t) =

∞∑
n=0

〈T |ωn〉
n!

tn.

On the other hand, let fT (t) ∈ F [[t]] be the formal power series. Taking
〈fT (t)|ωn〉 = an, we have

(1.11) fT (t) =
∞∑
n=0

〈fT (t)|ωn〉
n!

tn.

From equations (1.10) and (1.11), we have

(1.12) 〈T |ωn〉 = 〈fT (t)|ωn〉.
Let x, ω be the indeterminates in F . Then there exists a unique linear
functional T : F [ω]→ F such that

(1.13) T (pn(ω)) = T

(
n∑
k=0

akω
k

)
=

n∑
k=0

ψ(ak)x
k, say sn(x),

where ψ is a homomorphism from F to F with ψ(1F ) = 1F , ψ(ω) = x
and 1F is identity of F (see [2]). Thus the linear functional T can be
defined by the operator 〈 ·|·〉 as following;

(1.14) T (pn(ω)) = 〈T |pn(ω)〉 = sn(x)

for any pn(ω) ∈ F [ω] with deg(pn(x)) = n. Therefore for any T ∈
L(F [ω], F ) there exists a unique sequence of polynomials sn(x), n ≥ 0
such that

(1.15)

∞∑
n=0

sn(x)

n!
tn = fT (t).

The function fT (t) is called the exponential generating function of the
sequence polynomials sn(x) (see [1]). The set F [[t]] of all formal power
series is usually given the structure of an algebra under formal addition
and multiplication. This algebra structure, the additive part of which
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agree with the vector space structure on L(F [ω], F ) which is transferred
from L(F [ω], F ) (see [4]). In this algebra, the new variable x is used
instead to the original variable ω. In this viewpoint, the variable ω is
called the shadow variable or umbra. The algebra so obtained is called
the umbral algebra, and the umbral calculus is the study of this algebra.

When fT (t) = exp(βt+x(1− et)), the sequence of polynomials sn(x)
satisfying the relation (1.15) was suggested by Toscano (see [8]). Since
the polynomials are used as the useful tool in the solving the problem
in the actuarial mathematics, it is called the actuarial polynomials and

denoted by a
(β)
n (x) (see [4, 9]). That is, the actuarial polynomials a

(β)
n (x)

can be represented by

(1.16)

∞∑
n=0

a
(β)
n (x)

n!
tn = exp(βt+ x(1− et)).

Recently, Jang et al. studied the characteristics of the special polynomi-
als and umbral representation of the moments in the Poisson distribution
(see [3, 6, 7]). In this paper, we investigate some umbral representations
in the actuarial polynomials.

2. Umbral characteristics

For any k, n ≥ 0, if fT (t) = tk, then

(2.1) 〈fT (t)|ωn〉 = 〈tk|ωn〉 = n!δn,k,

where δn,k is Kronecker delta which is defined by 1 if n = k and 0
otherwise. Let fT (t) and fS (t) be the formal power series related to T
and S, respectively. If 〈fT |ωn〉 = 〈fS (t)|ωn〉 for any nonnegative integer
n, then by uniqueness of T we have T = S and fT (t) = fS (t). As a
similar result, we have the following lemma.

Lemma 2.1. (see [4]) For any two polynomials p(ω) and q(ω) in F [ω]
if

〈tk|p(ω)〉 = 〈tk|q(ω)〉
for all k ≥ 0, then p(ω) = q(ω).

The order of a power series f(t) is the smallest integer k for which
the coefficient of tk is not vanish and denoted by order(f(t)). We take
order(f(t)) =∞ if f(t) = 0. It is easily to see that

(2.2) order(f(t)g(t)) = order(f(t)) + order(g(t)).
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Lemma 2.2. Let f(t) be a formal power series in F [ω] with order(f(t)) =

1. Then there exists a unique sequence An(ω) of polynomials satisfying
the conditions

〈f(t)k|An(ω)〉 = n!δn,k
for all n, k ≥ 0, where δn,k is the Kronecker delta which is defined by 1
if n = k and 0 otherwise.

Proof. Since 〈f(t)|1〉 = 0 and 〈f(t)|ω〉 6= 0, for all k ≥ 0 there exist
constants bk,i for which f(t)k =

∑∞
i=k bk,it

i with bk,k 6= 0. To show that
the existence of polynomials An(ω) satisfying the orthogonal conditions,
let An(ω) =

∑n
j=0 an,jω

j for all n ≥ 0. Then

n!δn,k =

〈 ∞∑
i=k

bk,it
i

∣∣∣∣ n∑
j=0

an,jω
j

〉
=
∞∑
i=k

∞∑
j=0

bk,ian,j〈ti|ωj〉 =
n∑
i=k

bk,ian,ii!.

Taking k = n, we obtain

an,n =
1

bn,n
.

By successively taking k = n, n − 1, · · · , 0, we have the coefficients
an,j (j = 0, 1, · · · , n). For the uniqueness, suppose that there exist
An(ω) and Bn(ω) such that

〈f(t)k|An(ω)〉 = 〈f(t)k|Bn(ω)〉

for all n, k ≥ 0. These conditions imply

〈tk|An(ω)〉 = 〈tk|Bn(ω)〉

for all n, k ≥ 0. By Lemma 2.1 we have the desired result for the
uniqueness.

From (1.11), we get 〈ext|ωn〉. Thus we have

(2.3) 〈ext|p(ω)〉 = p(x)

for any p(ω) ∈ F [ω]. Therefore

(2.4) 〈ext|An(ω)〉 = An(x).

We say that the sequence An(x) satisfying equation (2.4) for polynomials
An(ω) in Lemma 2.2 is the associated sequence for f(t) (see [4]).

Theorem 2.3. If the sequence An(x) is associated for f(t) = ln(1−
t) (|t| < 1), then the exponential generating function of An(x) is

∞∑
n=0

An(x)

n!
tn = ex(1−e

t) (|t| < 1).
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Proof. Since

ln(1− t) = −
∞∑
n=1

tn

n
tn (|t| < 1),

we know that
〈f(t)|1〉 = 0, and 〈f(t)|ω〉 6= 0.

For any formal series h(t) ∈ F [[t]] we have〈 ∞∑
k=0

〈h(t)|Ak(ω)〉
k!

f(t)k
∣∣∣∣ An(ω)

〉
=
∞∑
k=0

〈h(t)|Ak(ω)〉
k!

〈f(t)k|An(ω)〉

=〈h(t)|An(ω)〉.
Then

h(t) =
∞∑
k=0

〈h(t)|Ak(ω)〉
k!

f(t)k.

Substituting ext to h(t), we have

ext =

∞∑
n=0

〈ext|An(ω)〉
n!

f(t)n =

∞∑
n=0

An(x)

n!
(ln(1− t))n .

Thus we have
∞∑
n=0

An(x)

n!
tn = ex(1−e

t).

This is the completion of the proof.

From equation (1.16) and Theorem 2.3 we have the following corol-
lary.

Corollary 2.4. The actuarial polynomials a
(β)
n (x) are represented

by

a(β)n (x) =

n∑
k=0

(
n

k

)
An−k(x)βk,

where An(x) is the associated sequence for ln(1− t) (|t| < 1).

Proof. Since

ex(1−e
t) =

∞∑
n=0

An(x)

n!
tn

and

eβt =
∞∑
n=0

βn

n!
tn,
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from Theorem 2.3 we have

∞∑
n=0

a
(β)
n (x)

n!
tn =

( ∞∑
n=0

An(x)

n!
tn

)( ∞∑
n=0

βn

n!
tn

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
An−k(x)βk

n!

)
tn.

Comparing the coefficients in the both sides, we have the desired result.

Let fk(t) be a formal power series having the order of k (k ≥ 0).
Then there exists a sequence of polynomials A∗n(ω) in F [ω] such that

(2.5) 〈fk(t)|A∗n(ω)〉 = n!δn,k,

where δn,k is the Kronecker delta. Since fk(t) = g(t)tk for some g(t) ∈
F [[t]] with order(g(t)) = 0, thus we have

(2.6) 〈g(t)tk|A∗n(ω)〉 = n!δn,k.

We say that the sequence A∗n(x) satisfying equation (2.4) for polynomials
A∗n(ω) in equation (2.6) is the Appell sequence for g(t) (see [4]).

Theorem 2.5. Let A∗n(x) be Appell sequence for g(t) = (1 − t)−β.
Then the exponential generating function of A∗n(x) is

∞∑
n=0

A∗n(x)

n!
tn = (1− t)βext.

Proof. For any formal series h(t) ∈ F [[t]] we have〈 ∞∑
k=0

〈h(t)|A∗k(ω)〉
k!

g(t)tk
∣∣∣∣ A∗n(ω)

〉
=

∞∑
k=0

〈h(t)|A∗k(ω)〉
k!

〈g(t)tk|A∗n(ω)〉

=〈h(t)|A∗n(ω)〉.

Then

h(t) =
∞∑
k=0

〈h(t)|A∗k(ω)〉
k!

g(t)tk.

Substituting ext to h(t), we have

ext =
∞∑
n=0

〈ext|A∗n(ω)〉
n!

g(t)tn =
∞∑
n=0

A∗n(x)

n!
g(t)tn.
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Thus
∞∑
n=0

A∗n(x)

n!
tn =

1

g(t)
ext.

and finally
∞∑
n=0

A∗k(x)

n!
tn = (1− t)βext.

This is the completion of the proof.

Let f(t) and g(t) be any formal power series with order(f(x)) = 1
and order(g(x)) = 0. Then there exists a sequence of polynomials sn(ω)
in F [ω] such that

(2.7) 〈g(t)f(t)k|sn(ω)〉 = n!δn,k,

where δn,k is the Kronecker delta. We say that the sequence sn(x) sat-
isfying equation (2.4) for polynomials sn(ω) in equation (2.7) is Sheffer
sequence for (f(t), g(t)) (see [4]). Since

(2.8) 〈g(t)f(t)k|sn(ω)〉 = n!〈g(t)f(t)k|sn(ω)〉,
thus the sequence sn(x) is Sheffer for (f(t), g(t)) if and only if g(t)sn(x)
is associated for f(t). And also since

(2.9) 〈g(t)f(t)k|sn(ω)〉 = n!

〈
g(t)tk

∣∣∣∣ (f(t)

t

)k
sn(ω)

〉
,

we know that the sequence sn(x) is Sheffer for (f(t), g(t)) if and only if
(f(t)/t)ksn(x) is Appell for g(t).

Theorem 2.6. Let sn(x) be Sheffer sequence for (ln(1 − t), (1 −
t)−β) (|t| < 1). Then the exponential generating function of s

(β)
n (x)

is
∞∑
n=0

sn(x)

n!
tn = exp(βt+ x(1− et)).

Proof. For any formal series h(t) ∈ F [[t]] we have〈 ∞∑
k=0

〈h(t)|sk(ω)〉
k!

g(t)f(t)k
∣∣∣∣ sn(ω)

〉
=
∞∑
k=0

〈h(t)|sk(ω)〉
k!

〈g(t)f(t)k|sn(ω)〉

=〈h(t)|sn(ω)〉.
Then

h(t) =

∞∑
k=0

〈h(t)|sk(ω)〉
k!

g(t)f(t)k.
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Substituting ext to h(t), we have

ext =
∞∑
n=0

〈ext|sn(ω)〉
n!

g(t)f(t)n =
∞∑
n=0

sn(x)

n!
(1− t)−β (ln(1− t))n .

Thus
∞∑
n=0

sn(x)

n!
(ln(1− t))n = (1− t)−βext.

and finally

∞∑
n=0

sn(x)

n!
tn = eβtex(1−e

t).

This is the completion of the proof.

From equation (1.16) and Theorem 2.6 we have the following corollary.

Corollary 2.7. Let f(t) = ln(1 − t) (|t| < 1) and g(t) = (1 −
t)−β. Then the sequence of the actuarial polynomials a

(β)
n (x) is Sheffer

sequence for (f(t), g(t)).
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