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SOME IDENTITIES ASSOCIATED WITH 2-VARIABLE

TRUNCATED EXPONENTIAL BASED SHEFFER

POLYNOMIAL SEQUENCES

Junesang Choi, Saima Jabee, and Mohd Shadab

Abstract. Since Sheffer introduced the so-called Sheffer polynomials in
1939, the polynomials have been extensively investigated, applied and

classified. In this paper, by using matrix algebra, specifically, some prop-

erties of Pascal and Wronskian matrices, we aim to present certain in-
teresting identities involving the 2-variable truncated exponential based

Sheffer polynomial sequences. Also, we use the main results to give some
interesting identities involving so-called 2-variable truncated exponential

based Miller-Lee type polynomials. Further, we remark that a number

of different identities involving the above polynomial sequences can be
derived by applying the method here to other combined generating func-

tions.

1. Introduction and preliminaries

Sequences of polynomials play an important role in dealing with various
problems arising in many different areas of pure and applied mathematics (see,
e.g., [2, 5, 17, 19–22]). Among a variety of polynomials, in 1939, Sheffer [24]
introduced the so-called Sheffer polynomials. The Sheffer polynomials have
been extensively investigated, applied and classified (see, e.g., [18, pp. 218–
232]).

A polynomial sequence {sn(x)}∞n=0 is called Sheffer polynomial sequence if
and only if its generating function is given by

a(t) exp (x b(t)) =

∞∑
n=0

sn(x)
tn

n!
.(1.1)

Here a(t) and b(t) are formal power series

a(t) =

∞∑
n=0

an t
n and b(t) =

∞∑
n=0

bn t
n
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with a(0) = a0 6= 0, b(0) = b0 = 0, and b′(0) = b1 6= 0 (see, e.g., [10, 20,24]).
The truncated exponential polynomials en(x) defined by the series (see [3])

en(x) =

n∑
k=0

xk

k!
(1.2)

are the first n+1 terms of the Maclaurin series for ex. Obviously, the truncated
exponential polynomials en(x) are defined by the generating function (see [6])

ext

1− t
=

∞∑
n=0

en(x) tn.(1.3)

The higher-order truncated exponential polynomials [r]en(x) defined by the
series

[r]en(x) =

[nr ]∑
k=0

xn−rk

(n− rk)!
(n, r ∈ N)(1.4)

are generated by the following function

ext

1− tr
=

∞∑
n=0

[r]en(x) tn(1.5)

(see [6]). Here and in the following, let N and C be the sets of positive integers
and complex numbers, respectively, and let N0 := N ∪ {0}.

The 2-variable truncated exponential polynomials (2VTEP) e
(r)
n (x, y) of or-

der r defined by

e(r)n (x, y) =

[nr ]∑
k=0

ykxn−rk

(n− rk)!
(1.6)

are generated by the following function

ext

1− ytr
=

∞∑
n=0

e(r)n (x, y)
tn

n!
(1.7)

(see [8, p. 174]).
Let F be a class of functions which are analytic at the origin. Then the

generalized Pascal functional matrix [Pn(g(t))] (g(t) ∈ F) is a lower triangular
n+ 1 by n+ 1 matrix defined by

Pn[g(t)]i,j =

{(
i
j

)
g(i−j)(t), if i ≥ j

0, otherwise,
(1.8)

for all i, j = 0, 1, . . . , n (see [25, 27]). Here and in the following, g(i)(t) is ith

derivative of g(t).
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The nth order Wronskian matrix of analytic functions g1(t), g2(t), . . . , gm(t)
∈ F is an n+ 1 by m matrix defined by

(1.9) Wn[g1(t), g2(t), . . . , gm(t)] =


g1(t) g2(t) g3(t) . . . gm(t)

g
′

1(t) g
′

2(t) g
′

3(t) . . . g
′

m(t)

...
...

...
. . .

...

g
(n)
1 (t) g

(n)
2 (t) g

(n)
3 (t) . . . g

(n)
m (t)


(see [25,27]).

Many authors have presented some recurrence relations, differential equa-
tions and identities involving various polynomial sequences (see, e.g., [4, 9, 11–
13,16,23]). Youn and Yang [27] obtained some identities and differential equa-
tion for Sheffer polynomial sequences by using matrix algebra (see also [1]).

Here and in the following, let g(t) be an invertible analytic function, that
is, g(0) 6= 0, and f(t) be analytic function with f(0) = 0 and f ′(0) 6= 0 that
admits compositional inverse. Then the 2-variable truncated exponential based
Sheffer polynomial sequences e(r)sn(x, y) are defined by the following generating
function

(1.10)
1

g(f−1(t)) (1− y(f−1(t))r)
exp(xf−1(t)) =

∞∑
n=0

e(r)sn(x, y)
tn

n!
,

where f−1(t) is the compositional inverse of f(t). In order to define the polyno-
mial sequence in (1.10), the left-member of (1.10) should be analytic at t = 0.
Then, obviously,

(1.11) e(r)sn(x, y) =
dn

dtn

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

) ∣∣∣∣
t=0

(n ∈ N0) .

Khan et al. [14] used operational methods to present some useful identi-
ties involving the 2-variable truncated exponential based Sheffer polynomial
sequences e(r)sn(x, y) and apply some results to demonstrate some special poly-
nomials, for example, the 2-variable truncated-exponential based generalized
Laguerre polynomials. Youn and Yang [27] used matrix algebra to provide a
differential equation and several recursive formulas of one variable Sheffer poly-
nomial sequences. In this paper, by employing Youn and Yang’s method [27],
we derive some presumably new identities involving the 2-variable truncated
exponential based Sheffer polynomial sequences e(r)sn(x, y).

To do this, some properties of the Wronskian matrices and the generalized
Pascal functional matrices and their relationships are recalled in the following
lemma (see, e.g., [26, 27]).

Lemma 1. Let u, v ∈ C and g(t), g1(t), . . . , gm(t), h(t) ∈ F . Then

(a) Linear

Pn[u g(t) + v h(t)] = uPn[g(t)] + v Pn[h(t)],

Wn[u g(t) + v h(t)] = uWn[g(t)] + vWn[h(t)].
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(b) Multiplicative

Pn[g(t)h(t)] = Pn[g(t)]Pn[h(t)] = Pn[h(t)]Pn[g(t)].

In addition, if g(t) 6= 0, then (Pn[g(t)])
−1

= Pn
[
g−1(t)

]
, where g−1(t)

denotes the multiplicative inverse of g(t).
(c) Pascal and Wronskian

Pn[g(t)]Wn[h(t)] = Pn[h(t)]Wn[g(t)] = Wn[(gh)(t)].

In addition,

Pn[g(t)]Wn[g1(t), g2(t), . . . , gm(t)] = Wn[(g g1)(t), (g g2)(t), . . . , (g gm)(t)].

(d) Let g(0) = 0 and g′(0) 6= 0. Then

Wn[h(g(t))]t=0 = Wn

[
1, g(t), g2(t), g3(t), . . . , gn(t)

]
t=0

Ω−1n Wn[h(t)]t=0.

Here and in the following, Ωn := diag[0!, 1!, 2!, . . . , n!] is the diagonal
n+ 1 by n+ 1 matrix.

2. Some identities involving 2-variable truncated exponential based
Sheffer polynomial sequences

Here, we introduce a vector form of the 2-variable truncated exponential
based Sheffer polynomial sequences e(r)sn(x, y) for (g(t), f(t)) which is defined
by

~e(r)sn(x, y) := [e(r)s0(x, y), e(r)s1(x, y), . . . , e(r)sn(x, y)]T ,(2.1)

where T denotes the transpose of a matrix. From (1.11), we have

(2.2) ~e(r)sn(x, y) = Wn

[
1

g(f−1(t))(1− y(f−1(t))r)
exp(xf−1(t))

] ∣∣∣∣
t=0

.

Lemma 2. Let e(r)sn(x, y) be the 2-variable truncated exponential based Sheffer
polynomial sequences for (g(t), f(t)). Then

(2.3)

Wn[e(r)s0(x, y), e(r)s1(x, y), . . . , e(r)sn(x, y)]T Ω−1n

= Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

× Pn
[

1

g(t)(1− ytr)

]
t=0

Pn
[
ext
]
t=0

.

Proof. Applying (d) in Lemma 1 to the right member of (2.2), we obtain

(2.4)

~e(r)sn(x, y) =Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

×Wn

[
ext

g(t)(1− ytr)

]
t=0

.

Using (c) in Lemma 1, we get

(2.5) Wn

[
ext

g(t)(1− ytr)

]
t=0

= Pn

[
1

g(t)(1− ytr)

]
t=0

Wn

[
ext
]
t=0

.
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Easily, we find the following well known identity

(2.6) Wn

[
ext
]
t=0

= [1 x x2 · · · xn]T .

Using (2.6) in (2.5) and applying the resulting identity in (2.4), we have

(2.7)

~e(r)sn(x, y) =Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

× Pn
[

1

g(t)(1− ytr)

]
t=0

[1 x x2 · · · xn]T .

Taking kth order partial derivative with respect to x on both sides of (2.7) and
dividing each side of the resulting identity by k!, we obtain
(2.8)

1

k!

[
∂k

∂xk e
(r)s0(x, y),

∂k

∂xk e
(r)s1(x, y), . . . ,

∂k

∂xk e
(r)sn(x, y)

]T
= Wn

[
1, (f−1(t)), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n Pn

[
1

g(t)(1− ytr)

]
t=0

×
[
0 · · · 0 1

(
k + 1

k

)
x

(
k + 2

k

)
x2 · · ·

(
n

k

)
xn−k

]T
.

Finally, we observe that the right member and the left member of (2.8) are
equal to the kth columns of the corresponding member of (2.3), respectively.
This completes the proof. �

Theorem 3. Let e(r)sn(x, y) be the 2-variable truncated exponential based Shef-
fer polynomial sequences for (g(t), f(t)). Then

(2.9)

n∑
k=0

(xαk + yrβk + γk)

k!

∂k

∂xk e
(r)sn(x, y) = e(r)sn+1(x, y),

where

αk =

(
1

f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0),

βk =

(
tr−1

(1− ytr)f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0)

and

γk =

(
− g′(t)

g(t)f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0).

Proof. Consider

(2.10) A(t;x, y;n, r)
∣∣
t=0

:= Wn

[
d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

.

Using (1.9), we get

(2.11) A(t;x, y;n, r)
∣∣
t=0

= [e(r)s1(x, y), e(r)s2(x, y), . . . , e(r)sn+1(x, y)]T .
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Since f ′(0) 6= 0, we have

(2.12)
{
f−1(t)

}′ ∣∣∣∣
t=0

=
1

f ′ (f−1(t))

∣∣∣∣
t=0

.

Using (2.12), we find
(2.13)
A(t;x, y;n, r)

∣∣
t=0

= Wn

[(
x

1

f ′(f−1(t))
+ yr

(f−1(t))r−1

(1− y(f−1(t))r)f ′(f−1(t))
− g′(f−1(t))

g(f−1(t))f ′(f−1(t))

)

× exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

.

Using (d) in Lemma 1, we obtain

(2.14)

A(t;x, y;n, r)
∣∣
t=0

= Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

×Wn

[(
x

1

f ′(t)
+ yr

tr−1

(1− ytr)f ′(t)
− g′(t)

g(t)f ′(t)

)
exp (xt)

g(t)(1− ytr)

]
t=0

.

Employing (b) and (c) in Lemma 1, we get
(2.15)
A(t;x, y;n, r)

∣∣
t=0

= Wn

[
1, (f−1(t)), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

× Pn
[

1

g(t)(1− ytr)

]
t=0

Pn [exp (xt)]t=0

×Wn

[
x

1

f ′(t)
+ yr

tr−1

(1− ytr)f ′(t)
− g′(t)

g(t)f ′(t)

]
t=0

.

Using Lemma 2, we obtain

A(t;x, y;n, r)
∣∣
t=0

= Wn[e(r)s0(x, y), e(r)s1(x, y), . . . , e(r)sn(x, y)]TΩ−1n

×Wn

[
x

1

f ′(t)
+ yr

tr−1

(1− ytr)f ′(t)
− g′(t)

g(t)f ′(t)

]
t=0

.

Or, equivalently,
(2.16)
A(t;x, y;n, r)

∣∣
t=0

=



e(r)s0(x, y) 0 0 . . . 0

e(r)s1(x, y) e(r)
s1
′
(x,y)

1! 0 . . . 0

e(r)s2(x, y) e(r)
s2
′
(x,y)

1!
e(r)

s2
′′
(x,y)

2! . . . 0

...
...

...
. . .

...

e(r)sn(x, y) e(r)
sn
′
(x,y)

1!
e(r)

sn
′′
(x,y)

2! . . . e(r)
sn

(n)(x,y)

n!




xα0 + yrβ0 + γ0
xα1 + yrβ1 + γ1
xα2 + yrβ2 + γ2

...
xαn + yrβn + γn

.
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Finally, equating nth rows of the right members of (2.11) and (2.16), we obtain
the desired result (2.9). �

Theorem 4. Let e(r)sn(x, y) be the 2-variable truncated exponential based Shef-
fer polynomial sequences for (g(t), f(t)). Then

(2.17) e(r)sn+1(x, y) =

n∑
k=0

(
n

k

)
(xδn−k + yrεn−k + ζn−k)e(r)sk(x, y),

where

δk =

(
1

f ′(f−1(t))

)(k) ∣∣∣∣
t=0

(k ∈ N0),

εk =

(
(f−1(t))r−1

(1− y(f−1(t))r)f ′(f−1(t))

)(k) ∣∣∣∣
t=0

(k ∈ N0)

and

ζk =

(
− g′(f−1(t))

g(f−1(t))f ′(f−1(t))

)(k) ∣∣∣∣
t=0

(k ∈ N0).

Proof. Applying (c) in Lemma 1 to (2.13), we obtain

A(t;x, y;n, r)
∣∣
t=0

= Pn

[
x

1

f ′(f−1(t))
+ yr

(f−1(t))r−1

(1− y(f−1(t))r)f ′(f−1(t))
− g′(f−1(t))

g(f−1(t))f ′(f−1(t))

]
t=0

×Wn

[
exp (f−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

.

Using (a) in Lemma 1 together with (2.1) and (2.2), we have
(2.18)
A(t;x, y;n, r)

∣∣
t=0

=



xδ0 + yrε0 + ζ0 0 0 . . . 0

xδ1 + yrε1 + ζ1 xδ0 + yrε0 + ζ0 0 . . . 0

xδ2 + yrε2 + ζ2
(
2
1

)
(xδ1 + yrε1 + ζ1) xδ0 + yrε0 + ζ0 . . . 0

...
...

...
. . .

...

xδn + yrεn + ζn
(
n
1

)
(xδn−1 + yrεn−1 + ζn−1) . . . . . . xδ0 + yrε0 + ζ0



×


e(r)s0(x, y)

e(r)s1(x, y)
...

e(r)sn−1(x, y)

e(r)sn(x, y)

 .
Finally, equating nth rows of right members of (2.11) and (2.18), we obtain
the desired result. �
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Theorem 5. Let e(r)sn(x, y) be the 2-variable truncated exponential based Shef-
fer polynomial sequences for (g(t), f(t)). Then

(2.19)

n∑
k=0

e(r)sn−k+1(x, y)ηk

= xe(r)sn(x, y) +

n∑
k=0

(
n

k

)
(yrθk + ϑk)e(r)sn−k(x, y),

where

ηk =
(
f ′(f−1(t))

)(k) ∣∣∣∣
t=0

(k ∈ N0),

θk =

(
(f−1(t))r−1

(1− y(f−1(t))r)

)(k) ∣∣∣∣
t=0

(k ∈ N0)

and

ϑk =

(
−g
′(f−1(t))

g(f−1(t))

)(k) ∣∣∣∣
t=0

(k ∈ N0).

Proof. Consider

(2.20)

B(t;x, y;n, r)
∣∣
t=0

:= Wn

[
f ′(f−1(t))

d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

.

Using (c) in Lemma 1, we get

B(t;x, y;n, r)
∣∣
t=0

= Pn

[
d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

Wn

[
f ′(f−1(t))

]
t=0

.

We find from (2.11) that
(2.21)
B(t;x, y;n, r)

∣∣
t=0

=



e(r)s1(x, y) 0 0 . . . 0

e(r)s2(x, y) e(r)s1(x, y) 0 . . . 0

e(r)s3(x, y)
(
2
1

)
e(r)s2(x, y) e(r)s1(x, y)) . . . 0

...
...

...
. . .

...

e(r)sn+1(x, y)
(
n
1

)
e(r)sn(x, y)

(
n
2

)
e(r)sn(x, y) . . . e(r)s1(x, y)




η0
η1
η2
...
ηn

 .

We also have
(2.22)
B(t;x, y;n, r)

∣∣
t=0

= Wn

[(
x+ yr

(f−1(t))r−1

(1− y(f−1(t))r)
− g′(f−1(t))

g(f−1(t))

)
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

,
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which, upon using (a), (b) and (c) in Lemma 1, yields

(2.23)

B(t;x, y;n, r)
∣∣
t=0

= xWn

[
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

+ yrPn

[
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

Wn

[
(f−1(t))r−1

(1− y(f−1(t))r)

]
t=0

+ Pn

[
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

Wn

[
−g
′(f−1(t))

g(f−1(t))

]
t=0

.

Finally, equating nth rows of the right members of (2.21) and (2.23), we obtain
the desired result (2.19). �

Theorem 6. Let e(r)sn(x, y) be the 2-variable truncated exponential based Shef-
fer polynomial sequences for (g(t), f(t)). Then

(2.24) n e(r)sn(x, y) =

n∑
k=0

(xκk + yrλk + µk)

k!

∂k

∂xk e
(r)sn−k(x, y),

where

κk =

(
f(t)

f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0),

λk =

(
tr−1f(t)

(1− ytr)f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0)

and

µk =

(
−g
′(t)f(t)

g(t)f ′(t)

)(k) ∣∣∣∣
t=0

(k ∈ N0).

Proof. Consider

(2.25) C(t;x, y;n, r)
∣∣
t=0

:= Wn

[
t
d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

.

Using (c) in Lemma 1, we have

C(t;x, y;n, r)
∣∣
t=0

= Pn [t]

∣∣∣∣
t=0

Wn

[
d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

.
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Or, equivalently,

(2.26)

C(t;x, y;n, r)
∣∣
t=0

=



0 0 0 . . . 0 0 0

2 0 0 . . . 0 0 0

0 3 0 . . . 0 0 0

0 0 4 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . n 0 0
0 0 0 . . . 0 n+ 1 0





e(r)s1(x, y)

e(r)s2(x, y)

e(r)s3(x, y)
...

e(r)sn(x, y)

e(r)sn+1(x, y)


.

We also have

C(t;x, y;n, r)
∣∣
t=0

= Wn

[(
x
f(f−1(t))

f ′(f−1(t))
+ yr

(f−1(t))r−1f(f−1(t))

(1− y(f−1(t))r)f ′(f−1(t))
− g′(f−1(t))f(f−1(t))

g(f−1(t))f ′(f−1(t))

)

× exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

,

which, upon using (d) in Lemma 1, yields

(2.27)

C(t;x, y;n, r)
∣∣
t=0

= Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

]
t=0

Ω−1n

×Wn

[(
x
f(t)

f ′(t)
+ yr

tr−1f(t)

(1− ytr)f ′(t)
− g′(t)f(t)

g(t)f ′(t)

)
exp (xt)

g(t)(1− ytr)

]
t=0

.

Applying (b) and (c) in (2.27), we get

C(t;x, y;n, r)
∣∣
t=0

= Wn

[
1, f−1(t), (f−1(t))2, . . . , (f−1(t))n

] ∣∣∣∣
t=0

Ω−1n Pn

[
1

g(t)(1− ytr)

]
t=0

× Pn [exp (xt)]t=0Wn

[
x
f(t)

f ′(t)
+ yr

tr−1f(t)

(1− ytr)f ′(t)
− g′(t)f(t)

g(t)f ′(t)

] ∣∣∣∣
t=0

,

which, in view of Lemma 2, leads to

(2.28)

C(t;x, y;n, r)
∣∣
t=0

= Wn [e(r)s0(x, y), e(r)s1(x, y), e(r)s2(x, y), . . . , e(r)sn(x, y)]
T

Ω−1n

×Wn

[
x
f(t)

f ′(t)
+ yr

tr−1f(t)

(1− ytr)f ′(t)
− g′(t)f(t)

g(t)f ′(t)

] ∣∣∣∣
t=0

.

Finally, equating nth rows of the right members of (2.26) and (2.28), we
obtain the desired result (2.24). �
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3. An application

Andrews [3, p. 320] commented that the Miller-Lee polynomials G
(m)
n (x)

given by

(3.1) G(m)
n (x) =

n∑
k=0

(
m+ n− k

m

)
xk

k!

arise in the problem of finding the probability density function for the output
of a cross correlator, by referring to two related papers.

Miller-Lee polynomials G
(m)
n (x) are given by the following generating func-

tion (see [7, p. 21, Eq. (1.11)] and [15, p. 760, Eq. (2.14)])

(3.2)
1

(1− t)m+1
exp(xt) =

∞∑
n=0

G(m)
n (x) tn (|t| < 1).

Dattoli et al. [7, p. 21, Eq. (1.9)], among integral representations of some
other polynomials, presented the following integral representation

(3.3) G(m)
n (x) =

1

m!n!

∫ ∞
0

e−t tm (x+ t)n dt.

Khan et al. [15, p. 760, Eq. (2.15)]) introduced Hermite-Miller-Lee polyno-

mials HG
(m)
n (x, y, z) defined by the following generating function

(3.4)
1

(1− t)m+1
exp

(
xt+ yt2 + zt3

)
=

∞∑
n=0

HG
(m)
n (x, y, z) tn (|t| < 1).

They also [15, p. 760, Eqs. (2.16) and (2.17)]) pointed out that the cases m = 0
and m = α − 1 of (3.4) give the following generating functions for, respec-

tively, Hermite-truncated exponential polynomials He
(m)
n (x, y, z) and Hermite-

modified Laguerre polynomials Hf
(α)
n (x, y, z):

(3.5)
1

1− t
exp

(
xt+ yt2 + zt3

)
=

∞∑
n=0

He
(m)
n (x, y, z) tn (|t| < 1)

and

(3.6)
1

(1− t)α
exp

(
xt+ yt2 + zt3

)
=

∞∑
n=0

Hf
(α)
n (x, y, z) tn (|t| < 1).

From Section 2, let e(r)sn(x, y) be the 2-variable truncated exponential based

Sheffer polynomial sequences for
(

1
(1−t)m+1 , t

)
, which we call 2-variable trun-

cated exponential based Miller-Lee type polynomials e(r)G
(m)
n (x, y).
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Applying the results in Theorems 3-6 to e(r)G
(m)
n (x, y), we, respectively, get

the following identities:
(3.7)

e(r)G
(m)
n+1(x, y) =

(
x+ ry

1
r −m− 1

)
e(r)G

(m)
n (x, y)

+

n∑
k=1

(
ry

1+k
r −m− 1

) ∂k

∂xk e
(r)G(m)

n (x, y) (n ∈ N0) ;

(3.8)

e(r)G
(m)
n+1(x, y)

=
(
ry

1
r −m− 1

)
e(r)G

(m)
n (x, y)

+

n−1∑
k=0

(
n

k

)(
x+ r(n− k)!y

1+n−k
r −(m+1)(n−k)!

)
e(r)G

(m)
n−k(x, y) (n ∈ N0) ;

(3.9)

e(r)G
(m)
n+1(x, y)− xe(r)G(m)

n (x, y) +

n∑
k=1

e(r)G
(m)
n−k+1(x, y)

=

n∑
k=0

(
n

k

)(
ry

1+k
r − (m+ 1)

)
k!e(r)G

(m)
n−k(x, y) (n ∈ N0) ;

(3.10)

(n− r)e(r)G(m)
n (x, y)

=
(
x+ ry

1
r −m− 1

) ∂

∂x e
(r)G

(m)
n−1(x, y)

+

n∑
k=2

1

k!

(
x+ ry

k
r k!− (m+ 1)k!

) ∂k

∂xk e
(r)G

(m)
n−k(x, y) (n ∈ N0) .

4. Remarks

In addition to the results in Theorems 3-6, we can obtain a number of
identities involving the 2-variable truncated exponential based Sheffer polyno-
mial sequences for (g(t), f(t)) by considering some combinations different from
A(t;x, y;n, r)

∣∣
t=0

, B(t;x, y;n, r)
∣∣
t=0

, and C(t;x, y;n, r)
∣∣
t=0

, for example,

Wn

[
f ′(f−1(t))g(f−1(t))

d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

,

Wn

[
1

g(f−1(t))(1− y(f−1(t))r)

]
t=0

= Wn

[
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)
exp (−xf−1(t))

]
t=0

,

Wn

[
g(f−1(t))

d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

,
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Wn

[
exp (xf−1(t))

(1− y(f−1(t))r)

]
t=0

= Wn

[
g(f−1(t))

exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

]
t=0

,

and

Wn

[
tf ′(f−1(t))

d

dt

(
exp (xf−1(t))

g(f−1(t))(1− y(f−1(t))r)

)]
t=0

.
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