• 제목/요약/키워드: norm inequality

검색결과 135건 처리시간 0.022초

CERTAIN WEIGHTED MEAN INEQUALITY

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권3호
    • /
    • pp.279-282
    • /
    • 2014
  • In this paper, we report a new sharp inequality of interpolation type in $\mathbb{R}^n$. This inequality is for controlling weighted average of a function via $L^n$ norm of the gradient of a function together with its' certain exponential norm.

AN INEQUALITY OF SUBHARMONIC FUNCTIONS

  • Choi, Chang-Sun
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.543-551
    • /
    • 1997
  • We prove a norm inequality of the form $\left\$\mid$ \upsilon \right\$\mid$ \leq (r - 1) \left\$\mid$ u \right\$\mid$_p, 1 < p < \infty$, between a non-negative subharmonic function u and a smooth function $\upsilon$ satisfying $$\mid$\upsilon(0)$\mid$ \leq u(0), $\mid$\nabla\upsilon$\mid$ \leq \nabla u$\mid$$ and $\mid$\Delta\upsilon$\mid$ \leq \alpha\Delta u$, where $\alpha$ is a constant with $0 \leq \alpha \leq 1$. This inequality extends Burkholder's inequality where $\alpha = 1$.

  • PDF

A CODING THEOREM ON GENERALIZED R-NORM ENTROPY

  • Hooda, D.S.
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.881-888
    • /
    • 2001
  • Recently, Hooda and Ram [7] have proposed and characterized a new generalized measure of R-norm entropy. In the present communication we have studied its application in coding theory. Various mean codeword lengths and their bounds have been defined and a coding theorem on lower and upper bounds of a generalized mean codeword length in term of the generalized R-norm entropy has been proved.

LOCAL AND NORM BEHAVIOR OF BLOWUP SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS

  • Senba, Takasi;Suzuki, Takashi
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.929-941
    • /
    • 2000
  • We study a parabolic system of chemotaxis introduced by E.F. Keler and L.A. Segel. First, norm behaviors of the blow-up solution are proven. Then some kind of symmetry breaking and the concentration toward the boundary follow when the L$^1$norm of the initial value is less than 8$\pi$. Meanwhile a method of rearrangement is porposed toprove an inequality of Trudinger-Moser's type.

  • PDF

APPROXIMATION METHODS FOR A COMMON MINIMUM-NORM POINT OF A SOLUTION OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Shahzad, N.;Zegeye, H.
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.773-788
    • /
    • 2014
  • We introduce an iterative process which converges strongly to a common minimum-norm point of solutions of variational inequality problem for a monotone mapping and fixed points of a finite family of relatively nonexpansive mappings in Banach spaces. Our theorems improve most of the results that have been proved for this important class of nonlinear operators.

Observer-based sampled-data controller of linear system for the wave energy converter

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.275-279
    • /
    • 2011
  • In this paper, an observer-based sampled-data controller of linear system is proposed for the wave energy converter. Based on the sampled-data observer, the controller is design. In the closed-loop system with controller, it obtains the norm inequality between the continuous-time state variable and the discrete-time one. Using the norm inequality, sufficient condition is derived for the asymptotic stability of the closed-loop system and formulated in terms of linear matrix inequality. Finally, the wave energy converter simulation is provided to verify the effectiveness of the proposed technique.

시변 불확실성을 가지는 선형 시스템을 위한 반복 제어 시스템의 설계 (Design of Repetitive Control System for Linear Systems with Time-Varying Uncertainties)

  • 정명진;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.13-18
    • /
    • 2005
  • This paper considers a design problem of the repetitive control system for linear systems with time-varying norm bounded uncertainties. Using the Lyapunov functional for time-delay systems, a sufficient condition ensuring robust stability of the repetitive control system is derived in terms of an algebraic Riccati inequality (ARI) or a linear matrix inequality (LMI). Based on the derived condition, we show that the repetitive controller design problem can be reformulated as an optimization problem with an LMI constraint on the free parameter.

ON WIELANDT-MIRSKY'S CONJECTURE FOR MATRIX POLYNOMIALS

  • Le, Cong-Trinh
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1273-1283
    • /
    • 2019
  • In matrix analysis, the Wielandt-Mirsky conjecture states that $$dist({\sigma}(A),{\sigma}(B)){\leq}{\parallel}A-B{\parallel}$$ for any normal matrices $A,B{\in}{\mathbb{C}}^{n{\times}n}$ and any operator norm ${\parallel}{\cdot}{\parallel}$ on $C^{n{\times}n}$. Here dist(${\sigma}(A),{\sigma}(B)$) denotes the optimal matching distance between the spectra of the matrices A and B. It was proved by A. J. Holbrook (1992) that this conjecture is false in general. However it is true for the Frobenius distance and the Frobenius norm (the Hoffman-Wielandt inequality). The main aim of this paper is to study the Hoffman-Wielandt inequality and some weaker versions of the Wielandt-Mirsky conjecture for matrix polynomials.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

GENERALIZATION OF THE BUZANO'S INEQUALITY AND NUMERICAL RADIUS INEQUALITIES

  • VUK STOJILJKOVIC;MEHMET GURDAL
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권3_4호
    • /
    • pp.191-200
    • /
    • 2024
  • Motivated by the previously reported results, this work attempts to provide fresh refinements to both vector and numerical radius inequalities by providing a refinement to the well known Buzano's inequality which as a consequence yielded another refinement of the Cauchy-Schwartz (CS) inequality. Utilizing the new refinements of the Buzano's and Cauchy-Schwartz inequalities, we proceed to obtain various vector and numerical radius type inequalities. Methods used in the paper are standard for the operator theory inequality topics.