AN INEQUALITY OF SUBHARMONIC FUNCTIONS

  • Published : 1997.08.01

Abstract

We prove a norm inequality of the form $\left\$\mid$ \upsilon \right\$\mid$ \leq (r - 1) \left\$\mid$ u \right\$\mid$_p, 1 < p < \infty$, between a non-negative subharmonic function u and a smooth function $\upsilon$ satisfying $$\mid$\upsilon(0)$\mid$ \leq u(0), $\mid$\nabla\upsilon$\mid$ \leq \nabla u$\mid$$ and $\mid$\Delta\upsilon$\mid$ \leq \alpha\Delta u$, where $\alpha$ is a constant with $0 \leq \alpha \leq 1$. This inequality extends Burkholder's inequality where $\alpha = 1$.

Keywords

References

  1. Lecture Notes in Mathematics v.1384 Differential subordination of harmonic functions and martingales, Harmonic Analysis and Partial Differential Equations (EL Escorial, 1987) D. L. Burkholder
  2. Ann. Probab. v.22 Strong differential subordination and stochastic integration D. L.Burkholder
  3. Subharmonic functions W. K. Hayman;P. B. Kennedy
  4. Analysis I S. Lang
  5. Math. Z. v.27 Sur les fonction conjuguees M. Riesz
  6. Convex functions A.W.Roberts;D. E.Varberg
  7. Trigonometric Series, (2nd ed.) A. Zygmund,