DOI QR코드

DOI QR Code

GENERALIZATION OF THE BUZANO'S INEQUALITY AND NUMERICAL RADIUS INEQUALITIES

  • VUK STOJILJKOVIC (Faculty of Science, University of Novi Sad, Mathematical Grammar School) ;
  • MEHMET GURDAL (Department of Mathematics, Suleyman Demirel University)
  • Received : 2024.04.30
  • Accepted : 2024.06.07
  • Published : 2024.07.30

Abstract

Motivated by the previously reported results, this work attempts to provide fresh refinements to both vector and numerical radius inequalities by providing a refinement to the well known Buzano's inequality which as a consequence yielded another refinement of the Cauchy-Schwartz (CS) inequality. Utilizing the new refinements of the Buzano's and Cauchy-Schwartz inequalities, we proceed to obtain various vector and numerical radius type inequalities. Methods used in the paper are standard for the operator theory inequality topics.

Keywords

Acknowledgement

The authors would like to thank the Editor-in-Chief and the anonymous reviewers for their insightful suggestions and careful reading of the manuscript.

References

  1. A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45 (2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
  2. J. Aujla and F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003), 217-233. https://doi.org/10.1016/S0024-3795(02)00720-6
  3. M. Al-Dolat and I. Jaradat, A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds, Filomat 37 (2023), 971-977. https://doi.org/10.2298/FIL2303971A
  4. M.W. Alomari, On Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00689-2
  5. M.W. Alomari, M. Bakherad, M. Hajmohamadi, C. Chesneau, V. Leiva and C. Martin-Barreiro, Improvement of Furuta's inequality with applications to numerical radius, Mathematics 11 (2023), 36.
  6. P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra Appl. 573 (2019), 166-177. https://doi.org/10.1016/j.laa.2019.03.017
  7. P. Bhunia, M. Gurdal, K. Paul, A. Sen and R. Tapdigoglu, On a new norm on the space of reproducing kernel Hilbert space operators and Berezin radius inequalities, Numer. Funct. Anal. Optim. 44 (2023), 970-986.
  8. P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham., 2022.
  9. I. Chalendar, E. Fricain, M. Gurdal and M. Karaev, Compactness and Berezin symbols, Acta Sci. Math. (Szeged) 78 (2012), 315-329. https://doi.org/10.1007/BF03651352
  10. S.S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat 28 (2014), 179-195. https://doi.org/10.2298/FIL1401179D
  11. S.S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), 269-278. https://doi.org/10.5644/SJM.05.2.10
  12. M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators II, Studia Math. 182 (2007), 133-140. https://doi.org/10.4064/sm182-2-3
  13. T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), 785-787. https://doi.org/10.1090/S0002-9939-1994-1169027-6
  14. M.T. Garayev, H. Guediri, M. Gurdal and G.M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra 69 (2021), 2059-2077. https://doi.org/10.1080/03081087.2019.1659220
  15. B. Gunturk and M. Gurdal, On some refining inequalities via Berezin symbols, Honam Math. J. to appear, 2024. https://doi.org/10.5831/HMJ.2024.46.3.473
  16. M. Gurdal and M. Alomari, Improvements of some Berezin radius inequalities, Constr. Math. Anal. 5 (2022), 141-153.
  17. M. Gurdal and H. Basaran, Advanced refinements of Berezin number inequalities, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 72 (2023), 386-396.
  18. M. Gurdal and R. Tapdigoglu, New Berezin radius upper bounds, Proc. Inst. Math. Mech. 49 (2023), 210-218.
  19. M.B. Huban, H. Ba,saran and M. Gurdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct. 12 (2021), 1-12. https://doi.org/10.54379/jiasf-2021-4-1
  20. M.B. Huban, H. Ba,saran and M. Gurdal, Berezin number inequalities via convex functions, Filomat 36 (2022), 2333-2344. https://doi.org/10.2298/FIL2207333H
  21. T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208-212. https://doi.org/10.1007/BF01343117
  22. F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), 11-17. https://doi.org/10.4064/sm158-1-2
  23. F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), 73-80. https://doi.org/10.4064/sm168-1-5
  24. F. Kittaneh and H.R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl. 23 (2020), 1117-1125.
  25. C.A. McCarthy, cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613
  26. R.K. Nayak, Advancement of numerical radius inequalities of operator and product of operators, Iran J. Sci. (2024). https://doi.org/10.1007/s40995-024-01603-1
  27. V. Stojiljkovi'c, R. Ramaswamy, O.A.A. Abdelnaby and S. Radenovic, Some refinements of the tensorial inequalities in Hilbert spaces, Symmetry 15 (2023), 925.
  28. V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert spaces, Eur. J. Pure Appl. Math. 16 (2023), 1421-1433.
  29. V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert Spaces, Electron. J. Math. Anal. Appl. 11 (2023), 1-15.
  30. V. Stojiljkovic and S.S. Dragomir, Refinement of the Cauchy-Schwartz inequality with refinements and generalizations of the numerical radius type inequalities for operators, Ann. Math. Comp. Sci. 21 (2024), 33-43.
  31. V. Stojiljkovic and M. Gurdal, Berezin radius type inequalities for functional Hilbert space operators, Electron. J. Math. 7 (2024), 35-44.