Acknowledgement
The authors would like to thank the Editor-in-Chief and the anonymous reviewers for their insightful suggestions and careful reading of the manuscript.
References
- A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45 (2015), 1055-1065. https://doi.org/10.1216/RMJ-2015-45-4-1055
- J. Aujla and F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003), 217-233. https://doi.org/10.1016/S0024-3795(02)00720-6
- M. Al-Dolat and I. Jaradat, A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds, Filomat 37 (2023), 971-977. https://doi.org/10.2298/FIL2303971A
- M.W. Alomari, On Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00689-2
- M.W. Alomari, M. Bakherad, M. Hajmohamadi, C. Chesneau, V. Leiva and C. Martin-Barreiro, Improvement of Furuta's inequality with applications to numerical radius, Mathematics 11 (2023), 36.
- P. Bhunia, S. Bag and K. Paul, Numerical radius inequalities and its applications in estimation of zeros of polynomials, Linear Algebra Appl. 573 (2019), 166-177. https://doi.org/10.1016/j.laa.2019.03.017
- P. Bhunia, M. Gurdal, K. Paul, A. Sen and R. Tapdigoglu, On a new norm on the space of reproducing kernel Hilbert space operators and Berezin radius inequalities, Numer. Funct. Anal. Optim. 44 (2023), 970-986.
- P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Springer Cham., 2022.
- I. Chalendar, E. Fricain, M. Gurdal and M. Karaev, Compactness and Berezin symbols, Acta Sci. Math. (Szeged) 78 (2012), 315-329. https://doi.org/10.1007/BF03651352
- S.S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat 28 (2014), 179-195. https://doi.org/10.2298/FIL1401179D
- S.S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), 269-278. https://doi.org/10.5644/SJM.05.2.10
- M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators II, Studia Math. 182 (2007), 133-140. https://doi.org/10.4064/sm182-2-3
- T. Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), 785-787. https://doi.org/10.1090/S0002-9939-1994-1169027-6
- M.T. Garayev, H. Guediri, M. Gurdal and G.M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra 69 (2021), 2059-2077. https://doi.org/10.1080/03081087.2019.1659220
- B. Gunturk and M. Gurdal, On some refining inequalities via Berezin symbols, Honam Math. J. to appear, 2024. https://doi.org/10.5831/HMJ.2024.46.3.473
- M. Gurdal and M. Alomari, Improvements of some Berezin radius inequalities, Constr. Math. Anal. 5 (2022), 141-153.
- M. Gurdal and H. Basaran, Advanced refinements of Berezin number inequalities, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 72 (2023), 386-396.
- M. Gurdal and R. Tapdigoglu, New Berezin radius upper bounds, Proc. Inst. Math. Mech. 49 (2023), 210-218.
- M.B. Huban, H. Ba,saran and M. Gurdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct. 12 (2021), 1-12. https://doi.org/10.54379/jiasf-2021-4-1
- M.B. Huban, H. Ba,saran and M. Gurdal, Berezin number inequalities via convex functions, Filomat 36 (2022), 2333-2344. https://doi.org/10.2298/FIL2207333H
- T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208-212. https://doi.org/10.1007/BF01343117
- F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), 11-17. https://doi.org/10.4064/sm158-1-2
- F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), 73-80. https://doi.org/10.4064/sm168-1-5
- F. Kittaneh and H.R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl. 23 (2020), 1117-1125.
- C.A. McCarthy, cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613
- R.K. Nayak, Advancement of numerical radius inequalities of operator and product of operators, Iran J. Sci. (2024). https://doi.org/10.1007/s40995-024-01603-1
- V. Stojiljkovi'c, R. Ramaswamy, O.A.A. Abdelnaby and S. Radenovic, Some refinements of the tensorial inequalities in Hilbert spaces, Symmetry 15 (2023), 925.
- V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert spaces, Eur. J. Pure Appl. Math. 16 (2023), 1421-1433.
- V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of selfadjoint operators in Hilbert Spaces, Electron. J. Math. Anal. Appl. 11 (2023), 1-15.
- V. Stojiljkovic and S.S. Dragomir, Refinement of the Cauchy-Schwartz inequality with refinements and generalizations of the numerical radius type inequalities for operators, Ann. Math. Comp. Sci. 21 (2024), 33-43.
- V. Stojiljkovic and M. Gurdal, Berezin radius type inequalities for functional Hilbert space operators, Electron. J. Math. 7 (2024), 35-44.