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WEIGHTED ESTIMATES FOR
CERTAIN ROUGH SINGULAR INTEGRALS

Chunjie Zhang

Abstract. In this paper we shall prove some weighted norm inequalities
of the form

Z

Rn
|Tf(x)|pu(x)dx ≤ Cp

Z

Rn
|f(x)|pNu(x)dx

for certain rough singular integral T and maximal singular integral T ∗.
Here u is a nonnegative measurable function on Rn and N denotes some

maximal operator. As a consequence, some vector valued inequalities for
both T and T ∗ are obtained. We shall also get a boundedness result of
T on the Triebel-Lizorkin spaces.

1. Introduction

It is a classical result for the singular integral

Tf(x) = P.V.

∫
Rn

K(x − y)f(y)dy

that

(1.1)
∫

Rn

|Tf(x)|pu(x)dx ≤ Cp,s

∫
Rn

|f(x)|pMsu(x)dx, 1 < p < ∞,

where Msu = (M(us))1/s, s > 1 and u(x) is a nonnegative measurable function
on Rn. The above inequality was first obtained by Cordoba and Fefferman
under the condition that |K̂(ξ)| ≤ B and K ∈ C1(Rn − {0}), see [8]. Similar
result for the Hardy-Littlewood Maximal function M is

(1.2)
∫

Rn

|Mf(x)|pu(x)dx ≤ Cp

∫
Rn

|f(x)|pMu(x)dx, 1 < p < ∞.
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1562 CHUNJIE ZHANG

Using (1.1) and (1.2), one is ready to get that, for 1 < p, r < ∞

(1.3)

∥∥∥∥∥∥∥
∑

j

|Tfj |r
1/r

∥∥∥∥∥∥∥
Lp

≤ Cp,r

∥∥∥∥∥∥∥
∑

j

|fj |r
1/r

∥∥∥∥∥∥∥
Lp

and

(1.4)

∥∥∥∥∥∥∥
∑

j

|Mfj |r
1/r

∥∥∥∥∥∥∥
Lp

≤ Cp,r

∥∥∥∥∥∥∥
∑

j

|fj |r
1/r

∥∥∥∥∥∥∥
Lp

by a standard process (see [13], Chapter V). The above estimates (1.2) and
(1.4) for M were first proved in [11].

In this paper, we shall consider the rough singular integral defined by

(1.5) Tf(x) = P.V.

∫
Rn

Ω(y)
|y|n

f(x − y)dy,

where Ω(y) = Ω(y′) ∈ L1(Sn−1) and
∫

Ω(y′) = 0. Then the Cordoba-Fefferman
inequality (1.1) was improved by Hofmann ([15]), where Ω(y′) was assumed to
be in Lr(Sn−1), r > 1. Recall that the maximal function related to Ω is defined
by

(1.6) MΩf(x) = sup
r>0

1
rn

∫
|y|<r

|Ω(y′)f(x − y)|dy.

Then the theorem of Hofmann can be stated as follow.

Theorem A. Let T and MΩ be defined as (1.5) and (1.6), where Ω ∈ Lr(Sn−1),
r > 1 satisfies

∫
Ω(y′) = 0. Then we have∫

Rn

|Tf(x)|pu(x)dx ≤ C

∫
Rn

|f(x)|pNsu(x)dx,∫
Rn

|MΩf(x)|pu(x)dx ≤ C

∫
Rn

|f(x)|pNsu(x)dx.

Here Nsu = MsM
Ω
s Msu, u(x) is a measurable nonnegative function on Rn and

s > 1 can be arbitrarily close to 1.

A better result than Theorem A can be concluded from [9] which says that
T and MΩ are in fact bounded from Lp(MsM

Ω̃t

s Msu) to Lp(u). Here Ω ∈
Lr(Sn−1), Ω̃(x) = Ω(−x) and t = max{0, p(1−r)+r}. For Ω ∈ L(ln+ L)s, s >

1, Vargas obtained a boundedness of MΩ from L1(Msu + M Ω̃(ln+ Ω̃)s

Msu) to
WL1(u), see [19] where a similar theorem for T was also obtained in R2.

Note by [10], or by the classical rotation method in [2], MΩf(x) is bounded
on Lp(Rn), p > 1 when Ω ∈ L1(Sn−1). Therefore, Nsu(x) is bounded on
Lp(Rn), p > s and Theorem A implies the lr-valued inequalities for T and MΩ.
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In this paper, we intend to extend Theorem A to more general singular
integrals as well as to the maximal singular integral T ∗ defined by

(1.7) T ∗f(x) = sup
ϵ>0

|Tϵf(x)| = sup
ϵ>0

∣∣∣∣∣
∫
|y|>ϵ

Ω(y′)
|y|n

f(x − y)dy

∣∣∣∣∣ ,

where Ω ∈ L1(Sn−1) has mean value zero and satisfies

(1.8) sup
ξ′∈Sn−1

∫
Sn−1

|Ω(y′)|
(

ln
1

|y′ · ξ′|

)1+α

dy′ ≤ Cα

for some α > 0. The above condition was first introduced by Grafakos and
Stefanov ([14]), where the following two theorems were obtained.

Theorem B. Suppose Ω ∈ L1(Sn−1) has mean value zero and satisfies (1.8)
for some α > 0. Then the singular integral T defined by (1.5) is bounded on
Lp(Rn) whenever (2 + α)/(1 + α) < p < 2 + α.

Theorem C. Suppose Ω ∈ L1(Sn−1) has mean value zero and satisfies (1.8)
for some α > 1. Then the maximal singular integral operator T ∗ is bounded on
Lp(Rn) for 1 + 3/(1 + 2α) < p < 2(2 + α)/3.

Now we are ready to state our main results.

Theorem 1. Suppose Ω ∈ L1(Sn−1) has mean value zero and satisfies con-
dition (1.8) for some α > 0. Then the singular integral T defined by (1.5)
verifies

(1.9)
∫

Rn

|Tf(x)|pu dx ≤ Cp,s

∫
Rn

|f(x)|p(MsM
Ω
s Ms + Ms)u dx

whenever λ(α, s) < p < 2+α− 1+α
s and s > 1+1/α for some 1 < λ(α, s) < 2.

Theorem 2. Suppose Ω ∈ L1(Sn−1) has mean value zero and satisfies con-
dition (1.8) for all α > 0. Then the maximal singular integral operator T ∗

verifies ∫
Rn

|T ∗f(x)|pu dx ≤ Cp,s

∫
Rn

|f(x)|p(MsM
Ω
s Ms + Ms)u dx

for 1 < p < ∞ and any s > 1.

Our proof of Theorem 1 follows essentially the proof of Theorem A, but
keeps track of the constants in each step in order to get the precise range of the
index p. We shall see that if (1.8) holds for all α > 0, then Theorem 1 is valid
for all 1 < p < ∞. Note by [14], the condition of Theorem 1 contains the case
Ω ∈ Lr(Sn−1), r > 1. Also we have the fact that Msu(x) ≤ ∥Ω∥−1

Lr MΩMsu(x)
almost everywhere. Thus Theorem 1 is an extension of Theorem A. In Theo-
rem 2, we have assumed (1.8) for all α > 0 rather than some fixed α in order to
avoid heavy computation. However, if we merely consider the Lp-boundedness
of T ∗, then our proof will provide a wider range of p than that of Theorem C.
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2. Some preparation

Let Tf(x) be defined by (1.5) and we decompose it as

Tf(x) =
+∞∑

k=−∞

σk ∗ f(x),

where

(2.1) σk(x) =
Ω(x′)
|x|n

χ{2k<|x|≤2k+1}.

It is trivial that
∫

Rn σk(x)dx = 0 and ∥σk(x)∥L1 ≤ C∥Ω(x′)∥L1 for all k ∈ Z.
We also denote σ̃k(x) = σk(−x). But since it always has the same properties
with σk(x), we shall abuse the notation and simply write σk in either case.

Lemma 1. Let Ω ∈ L1(Sn−1) satisfy
∫

Ω(y′)dσ(y′) = 0 and condition (1.8)
for some α > 0. Then we have the following estimate for {σk},

|σ̂k(ξ)| ≤ C min{|2kξ|, (ln |2kξ|)−(1+α)}, k ∈ Z.

One may find the above conclusion in [14] or compute directly from (1.8).
Next we define

Mσf(x) = sup
k

|σk| ∗ |f |(x).

It is not hard to check that Mσ is equivalent to MΩ defined by (1.6). But it
will be convenient to use Mσ in our context. The following lemma is stated
with Mσ and was obtained in the proof of Theorem 1 in [14].

Lemma 2. Let Ω be as in Lemma 1. Then Mσ is bounded on Lp(Rn) for
(2 + α)/(1 + α) < p < 2 + α.

Taking a nonnegative function Φ(t) ∈ C∞
c (R+) such that

∑+∞
j=−∞ Φ3(2jt) =

1, we define Sjf(x) = Ψj ∗ f(x), where Ψ̂j(ξ) = Φ(2j |ξ|). It is then a classical
result that the Littlewood-Paley g-function

g(f) =

 +∞∑
j=−∞

|Sjf |2
1/2

satisfies

(2.2) ∥g(f)∥Lp(w) ≤ Cp,w∥f∥Lp(w), 1 < p < ∞, w ∈ Ap

and

(2.3)

∥∥∥∥∥∥
∑

j

Sjfj

∥∥∥∥∥∥
Lp(w)

≤ Cp,w

∥∥∥∥∥∥(
∑

j

|fj |2)1/2

∥∥∥∥∥∥
Lp(w)

, 1 < p < ∞, w ∈ Ap.

In fact, (2.2) was obtained by viewing g(f) as an l2-valued singular integral
(see [16]). The second inequality is an easy consequence of the first one by
duality.
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Lemma 3. Let σk be as in Lemma 1. Then for any s > 1, we have∥∥∥∥∥∥
(∑

k

|σk ∗ gk|2
)1/2

∥∥∥∥∥∥
Lq(u)

≤ Cq,s

∥∥∥∥∥∥
(∑

k

|gk|2
)1/2

∥∥∥∥∥∥
Lq(Mσ

s u)

,

where 2 ≤ q < 4 + 2α − 2(1+α)
s and u is nonnegative measurable on Rn.

Proof. The case q = 2 is trivial. When q > 2, by duality we get a v ∈ L( q
2 )′(u)

with unit norm such that∥∥∥∥∥∥
(∑

k

|σk ∗ gk|2
)1/2

∥∥∥∥∥∥
2

Lq(u)

=
∫

Rn

∑
k

|σk ∗ gk|2 · v(x)u(x)dx.

Since ∥σk∥L1 ≤ C, the above expression does not exceed∑
k

∫
Rn

|σk| ∗ |gk|2v(x)u(x)dx =
∑

k

∫
Rn

|gk|2|σk| ∗ (v · u)(x)dx.

Fix s > 1 and let r = qs/2. By Hölder’s inequality, we have

|σk| ∗ (v · u) =
(
|σk| ∗ u2r/q

) 1
r ·

(
|σk| ∗ (vr′

ur′/(q/2)′)
) 1

r′
.

Again by Hölder’s inequality with exponents q/2 and (q/2)′,∑
k

∫
Rn

|gk|2σk ∗ (v · u)dx

≤
∫

Rn

(
∑

k

|gk|2)(Mσus)1/r · Mσ(vr′
ur′/(q/2)′)

1
r′ dx

≤

∥∥∥∥∥∥
(∑

k

|gk|2
)1/2

∥∥∥∥∥∥
2

Lq(Mσ
s u)

·
(∫

Rn

(
Mσ(vr′

ur′/(q/2)′)
)(q/2)′/r′

dx

) 1
(q/2)′

.

If we let ( q
2 )′/r′ ∈ ( 2+α

1+α , 2 + α), then Lemma 2 is applied to get∫
Rn

(
Mσ(vr′

ur′/(q/2)′)
)(q/2)′/r′

≤
∫

Rn

v(q/2)′udx = 1.

Remembering s = 2r/q and the requirement that
2 + α

1 + α
<

(q/2)′

r′
< 2 + α,

we conclude

(2.4)
2(s − 1)
s(1 + α)

+ 2 < q < 4 + 2α − 2(1 + α)
s

.

The left side of the above inequality is larger than 2. But this in fact gives no
restriction since we can interpolate between the case q = 2 and some large q
satisfying (2.4). ¤
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3. Proof of the theorems

Proof of Theorem 1. We first consider the case p ≥ 2. Since Msu ∈ A1 (see [7])
and u ≤ Msu, we can restrict ourselves to show∫

Rn

|Tf(x)|pw(x)dx ≤ C

∫
Rn

|f(x)|pMsM
σ
s w(x)dx

with w(x) ∈ A1. Using the notations stated after Lemma 2, we decompose
Tf(x) into ∑

k

∑
j

S3
j+k(σk ∗ f) =

∑
j

∑
k

S3
j+k(σk ∗ f) =

∑
j

Tjf.

Then by Minkowski’s inequality, it suffices to show

(3.1) ∥Tjf∥Lp(w) ≤ C(1 + |j|)−γ(α,p,s)∥f∥Lp(MsMσ
s w),

where γ(α, p, s) should be strictly larger than 1 in order to be summable. Thus
the range of p depending on α and s will be obtained.

To prove (3.1), by interpolation, we only have to show

(3.2) ∥Tjf∥L2(w) ≤ C(1 + |j|)−γ1(α,s)∥f∥L2(MsMσ
s w)

and

(3.3) ∥Tjf∥Lp(w) ≤ C∥f∥Lp(MsMσ
s w).

Inequality (3.3) is immediate by Lemma 3 since

∥Tjf∥Lq(w) =

∥∥∥∥∥∑
k

S3
j+kσk ∗ f

∥∥∥∥∥
Lq(w)

≤ C

∥∥∥∥∥∥
(∑

k

|S2
j+kσk ∗ f |2

) 1
2

∥∥∥∥∥∥
Lq(w)

≤ C

∥∥∥∥∥∥
(∑

k

|S2
j+kf |2

) 1
2

∥∥∥∥∥∥
Lq(MsMσ

s w)

≤ C∥f∥Lq(MsMσ
s w).

Here we have also used (2.3) in the first inequality and (2.2) in the last inequal-
ity. However, we have to pay special attention to (3.3) because it holds only
for 2 ≤ q < 4 + 2α − 2(1+α)

s . Next we turn to (3.2). By (2.3),

∥Tjf∥2
L2(w) =

∥∥∥∥∥∑
k

S3
j+kσk ∗ f

∥∥∥∥∥
2

L2(w)

≤
∑

k

∫
Rn

|S2
j+kσk ∗ f |2w(x)dx.

Therefore, (3.2) will be proved if we show

(3.4)
∫

Rn

|σk ∗ Sj+kf |2w(x)dx ≤ C(1 + |j|)−2γ1(α,s)

∫
Rn

|h|2MsM
σ
s w(x)dx

because we are able to substitute Sj+kf for h and apply (2.2) once more.
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Now it remains to show (3.4). But this just follows by another interpolation
with change of measures (see [17] or [1], p. 115) between

(3.5)
∫

Rn

|σk ∗ Sj+kh|2dx ≤ C(1 + |j|)−2γ2(α)

∫
Rn

|h|2dx

and

(3.6)
∫

Rn

|σk ∗ Sj+kh|2wsdx ≤ C

∫
Rn

|h|2MMσ(ws)dx.

Since ∥σk∥L1 ≤ C and ∥Ψj+k∥L1 ≤ C, the left side of (3.6) does not exceed∫
Rn

|σk| ∗ |Sj+k| ∗ |h|2wsdx

and (3.6) then follows by duality. Using Plancherel’s theorem, the left side of
(3.5) equals ∫

Rn

|σ̂k|2Φ2
j+k(ξ)|ĥ|2dξ

which by Lemma 1 is no larger than

C

∫
2−j−k−1<|ξ|≤2−j−k

min{2k|ξ|, (ln |2kξ|)−1−α}2|ĥ|2dξ

≤ C(1 + |j|)−2(1+α)∥h∥2
L2 .

Thus we have proved (3.5) with γ2 = 1 + α. By interpolation, we find that
γ1(α, s) = (1 + α)(1− 1/s). Since it must be larger than 1, we have to assume
s > 1 + 1/α. The constant γ(α, p, s) is also obtained by interpolation so that
γ(α, p, s) = θγ1(α, s) where θ satisfies θ

2 + 1−θ
q = 1

p and q ∈ (2, 4 + 2α −
2(1 + α)/s). Again we have to let γ(α, p, s) > 1 and finally conclude 2 ≤ p <
2 + α − 1+α

s .
Next we consider the case p < 2. In [15], the conclusion of our Lemma 3

here was stated for all 1 < q < ∞. But Watson found that the proof there
when 1 < q < 2 was incorrect and a correction was written by Hofmann and
Watson to fix this problem, see the appendix. We shall sketch its idea briefly
to see that it adapts to our situation here. Note we have to show∫

Rn

|Tf |pu dx ≤ Cp,s

∫
Rn

|f |p(MsM
σ
s Ms + Ms)u dx

for λ(α, s) < p < 2. And it is enough to prove

(3.7)
∫

Rn

|Tf |pv1/r ≤ Cp,s

∫
Rn

|f |p(MMσMsv + Msv)1/r

for all r, s > 1.
First it was shown in [15] that

(3.8)
∫

Rn

|Mσf |pv1/r ≤ Cp,r

∫
Rn

|f |p(MMσMsv + Msv)1/r
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always holds with the same exponents as (3.7). Then by Lemma 2,

(3.9)
∫

Rn

(
sup

k
|σk ∗ fk|

)p

dx ≤ Cp

∫
Rn

(
sup

k
|fk|

)p

dx,
2 + α

1 + α
< p < 2

since supk |σk ∗ fk| ≤ Mσ(supk |fk|). On the other hand, as in the appendix,
we can show

(3.10)
∫

Rn

∑
k

|σk ∗ fk|pv ≤ Cp

∫
Rn

∑
k

|fk|p(MMσMsv + Msv), 1 < p < 2.

Interpolating with change of measures between (3.9) and (3.10) gives∫
Rn

(∑
k

|σk ∗ fk|2
)p/2

v1/r1 ≤ Cp,r1

∫
Rn

(∑
k

|fk|2
)p/2

(MMσMsv+Msv)1/r1

which is the substitute of Lemma 3 when p < 2. Following the same argument
for p > 2, we get (3.7) thus (3.8) which yields
(3.9′)∫

Rn

(
sup

k
|σk ∗ fk|

)p

v1/r1 ≤ Cp,r1

∫
Rn

(
sup

k
|fk|

)p

(MMσMsv + Msv)1/r1

with λ1(α, s, r1) < p < 2. We proceed to interpolate between (3.9′) and (3.10).
By induction we get a sequence {rk} which tends to 1. Thus for any fixed r, s >
1, we stop at some rk0 < r and derive the desired range λk0(α, s, rk0) < p < 2.
It should be complicated to give the explicit expression of λk0 . However, it
goes to 1 when α tends to ∞. ¤

Remark 1. Taking v = ur in (3.8) and relabelling the exponents, we get

(3.11)
∫

Rn

(Mσf)pu(x)dx ≤ Cp,s

∫
Rn

|f |p(MsM
σ
s Ms + Ms)u(x)dx.

If (1.8) is satisfied for all α > 0, then (3.11) holds for all 1 < p < ∞.

Proof of theorem 2. We shall continuously apply Theorem 1 and the remark
above. Now that (1.8) holds for all α > 0, (1.9) and (3.11) are valid for all
1 < p < ∞.

Let us first note that

Tϵf(x) =
∫

ϵ<|y|≤2k

Ω(y′)
|y|n

f(x − y)dy +
+∞∑
j=k0

σj ∗ f(x)

for some k0 satisfying 2k0−1 ≤ ϵ < 2k0 . Therefore

T ∗f(x) ≤ Mσf(x) + sup
k

∣∣∣∣∣∣
+∞∑
j=k

σj ∗ f(x)

∣∣∣∣∣∣ .
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By Remark 1, we obtain the required estimate for Mσ. Taking a C∞ function
ϕ which is supported on B(0, 2) and equals to 1 on B(0, 1), and setting ψ̂k(ξ) =
ϕ(2kξ), we have

+∞∑
j=k

σj ∗ f = ψk ∗ Tf − ψk ∗
k−1∑

j=−∞
σj ∗ f + (δ − ϕk) ∗

+∞∑
j=k

σj ∗ f

= I1 + I2 + I3,

where δ is the dirac measure at zero. Obviously supk I1 ≤ M(Tf)(x) and
supk Ik ≤ Mf(x) (see [10], p. 348). The required estimates for those two
terms are obtained by applying Theorem 1.

Now we turn to

sup
k

I3 = sup
k

∣∣∣∣∣∣(δ − ψk) ∗
∞∑

j=k

σj ∗ f

∣∣∣∣∣∣
which is bounded by

∞∑
j=0

sup
k

|(δ − ψk) ∗ σj+k ∗ f | =
+∞∑
j=0

Kjf(x).

For any nonnegative measurable function u,∫ (
sup

k
|(δ − ψk) ∗ σj+k ∗ f |

)q

udx ≤ 2q

∫ (
sup

k
M(σj+k ∗ f)

)q

udx

≤ 2q

∫ (
M(sup

k
|σj+k ∗ f |)

)q

udx

≤ 2q

∫
(M(Mσf |))q

udx.

By Remark 1, we get

(3.12)
∫

Rn

|Kjf(x)|qu(x)dx ≤ C

∫
Rn

|f(x)|qNsu(x)dx.

When q = 2, substituting us for u we get

(3.13)
∫

Rn

|Kjf(x)|2us(x)dx ≤ C

∫
Rn

|f(x)2Ns(us)(x)dx.

Replacing s with s2 in (3.12) gives

(3.14)
∫

Rn

|Kjf(x)|qu(x)dx ≤ C

∫
Rn

|f(x)|qNs2u(x)dx.

Later we shall prove, by Plancherel’s theorem that

(3.15)
∫

Rn

|Kjf(x)|2dx ≤ (1 + j)−2(1/2+α)

∫
Rn

|f(x)|2dx, ∀ α > 0.
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Interpolating with change of measures between (3.13) and (3.15) gives

(3.16)
∫

Rn

|Kjf(x)|2u(x)dx ≤ C(1 + j)−2γ3(α,s)

∫
Rn

|f(x)|2Ns2u(x)dx,

where γ3(α, s) = (1/2 + α)(1 − 1/s). By another interpolation between (3.14)
and (3.16), we get∫

Rn

|Kjf(x)|pu(x)dx ≤ C(1 + j)−2γ4(α,s,p)

∫
Rn

|f(x)|pNs2u(x)dx.

Replacing s2 with s in the above inequality and taking α sufficiently large so
that γ4 > 1, we obtain the required estimate for supk I3 by taking sums over
j ≥ 0.

Finally let us look at (3.15). It is easy to see that

Kjf(x) ≤

(∑
k

|(δ − ψk) ∗ σj+k ∗ f |2
)1/2

.

Thus by Plancherel’s theorem,∫
Rn

|Kjf(x)|2dx ≤
∑

k

∫
Rn

|(δ − ψk) ∗ σj+k ∗ f |2dx

=
∑

k

∫
Rn

|1 − ϕ(2kξ)|2|σ̂j+k(ξ)|2|f̂ |2dξ

=
∑

k

χ|2kξ|>2(ξ)
(ln |2j+kξ|)2(1+α)

∫
Rn

|f̂ |2dξ

=
∑

k

Cχ|2kξ|>2(ξ)
(j + ln |2kξ|)2(1+α)

∫
Rn

|f(x)|2dx

= C(1 + j)−1−2α∥f∥2
L2 .

¤

Remark 2. Note that (3.15) is more precise than the corresponding L2-estimate
in [14]. Thus by plugging it into the proof of Theorem C, we shall get a better
range of p and also a weaker restriction on α (α > 1/2 is enough to guarantee
the Lp boundedness of T ∗).

4. Applications

We all know the close connection between the weighted norm inequality and
the lr-valued inequality. With Theorem 1 in hand, we are ready to obtain the
following corollary.
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Corollary 1. Let Ω have mean value zero and satisfy (1.8) for all α > 0. Then
the singular integral T verifies

(4.1)

∥∥∥∥∥∥
(∑

k

|Tfk|r
)1/r

∥∥∥∥∥∥
Lp

≤ Cr,p

∥∥∥∥∥∥
(∑

k

|fk|r
)1/r

∥∥∥∥∥∥
Lp

for all 1 < r, p < ∞. Similar result holds for Mσ.

The proof of (4.1) when p ≥ r is direct while the case 1 < p < r follows by
duality. Similar estimate for Mσ can be reached by viewing it as a linearizable
operator described in [13], Chapter V. However, the lr-valued inequality for T ∗

is a bit complicated since it can not be treated like T or Mσ. One may follow
the method in [20] to prove a weighted norm inequality∫

Rn

|T ∗f(x)|2w(x)dx ≤ C

∫
Rn

|f(x)|2w(x)dx,

where w belongs to some special kind of weights AΩ
2 , and then use an extrap-

olation property of AΩ
p to proceed.

A further application comes from the relationship between the lr-valued
inequality and the boundedness of linear operators on Triebel-Lizorkin spaces.
Let us recall the definition of homogeneous Triebel-Lizorkin space Ḟ β,r

p . Take
Φ ∈ C∞

c (Rn) which satisfies supp(f) ⊂ {ξ : 1/2 < |ξ| < 2} and Φ(ξ) ≥ 1 if
3/5 < |ξ| < 5/3. Define Ψk(x) by Ψ̂k(ξ) = Φ(2kξ). Then we say a tempered
distribution f belongs to Ḟ β,r

p , β ∈ R, 1 < p, r < ∞ if and only if

∥f∥Ḟ β,r
p

=

∥∥∥∥∥∥
(∑

k

|2−kβΨk ∗ f |r
)1/r

∥∥∥∥∥∥
Lp

< +∞.

From [12] we know that Ḟ 0,2
p = Hp when 0 < p ≤ 1, Ḟ 0,2

p = Lp when 1 < p < ∞
and Ḟ β,2

p = L̇p
β , p > 1 is the Sobolev space.

The boundedness of the singular integrals on Ḟ β,r
p has been studied by many

authors (see [3, 4, 6]). Following is one of the theorems taken from [3].

Theorem D. Suppose Ω ∈ Lq(Sn−1), q > 1 satisfies
∫

Ω(y′) = 0. Then the
singular integral T defined by (1.5) is bounded on Ḟ β,r

p , β ∈ R, 1 < p, r < ∞.

Now by applying (4.1), we can extend the above theorem to (see [5]).

Corollary 2. Suppose Ω satisfies (1.8) uniformly for all α > 0 and has mean
value zero. Then the singular integral defined by (1.5) is bounded on Ḟ β,r

p , β >
0, 1 < r, p < ∞.
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Proof. Since T commutes with convolution,

∥Tf∥Ḟ β,r
p

=

∥∥∥∥∥∥
(∑

k

|2−kβΨk ∗ Tf |r
)1/r

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥
(∑

k

|T (2−kβΨk ∗ f)|r
)1/r

∥∥∥∥∥∥
Lp

≤ Cp,r

∥∥∥∥∥∥
(∑

k

|2−kβΨk ∗ f |r
)1/r

∥∥∥∥∥∥
Lp

= Cp,r∥f∥Ḟ β,r
p

.

Here (4.1) is applied with fk being replaced by 2−kβΨk ∗ f . ¤

Acknowledgement. The author would like to express his appreciation to the
referee for his good suggestion and for providing the Erratum which is listed
below as the appendix.

Appendix

Erratum to Steve Hofmann’s paper, “Weighted norm inequalities
and vector-valued inequalities for certain rough operators”

Steve Hofmann and David K. Watson
September 1994

In [15], the first-named author, following J. Duoandikoetxea and J. L. Rubio
de Francia [10], studies singular integrals and maximal functions on Rn of the
form

Tσf =
∞∑

k=−∞

σk ∗ f,

Mµf = sup
k∈Z

|µk ∗ f |,

with {σk}∞k=−∞ and {µk}∞k=−∞ being sequence of Borel measures such that∫
dσk = 0, µk ≥ 0, and ∥σk∥ ≤ 1, ∥µk∥ ≤ 1. In addition, these measures are

assumed to satisfy mild orthogonality generalized smoothness properties, as
embodied by certain Fourier transform estimates [15, (1.9) and (1.10)]. These
hypotheses were seen in [10] to be sufficient to show that Tσ and Mµ are
bounded on Lp for all p > 1.
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The main result of [15], Theorem 1.11, states that for 1 < p < ∞, for all
t > 1, and for all nonnegative locally integrable u, the inequalities∫

|T σf |pu ≤ Cp,t

∫
|f |pMtM

|eσ|
t Mtu,∫

|Mµf |pu ≤ Cp,t

∫
|f |pMtM

|eµ|
t Mtu,

hold with constant independent of u. Here M is the Hardy-Littlewood Maximal
operator, Mtf = (M(|f |t))1/t, and µ̃k is defined by∫

f(x)dµ̃k =
∫

f(−x)dµk.

From estimates of the sort appearing in this theorem, it is well-known that
vector-valued inequalities follow [15, (1.2)].

In [15], the proof of the theorem depends on a lemma, [15, Lemma 2.9, p. 8],
which states that the inequality

(†)

∥∥∥∥∥(
∑

k

|σk ∗ gk|2)1/2

∥∥∥∥∥
p,w

≤ Cp,w

∥∥∥∥∥(
∑

k

|gk|2)1/2

∥∥∥∥∥
p,M

|eσ|
s w

holds for 1 < p < ∞ and for w ∈ A1, with constant depending only on p and
the A1 constant of w. The proof of the inequality in [15] is correct only for
the case p ≥ 2; for the case 1 < p < 2 the proof given is incorrect because
an assumption of positivity is inconsistent with the use of random variables.
In this note we prove a substitute inequality (see (S) below) and show how
this new inequality still yields the theorem. This is done by combining the
essential strategy of [15] with some additional considerations. The error in [15]
was found by the second author, who also suggested the corrected proof, given
here.

In [15], the theorem at a given exponent p follows from the use of (†) at the
same exponent, so we must prove the theorem for the case 1 < p < 2. To do
so, it will suffice to prove the following two inequalities:

(∗)
∫

|Tσf |pv1/r ≤ Cp,r

∫
|f |p(MM |eσ|Msv)1/r

(∗∗)
∫

|Mµf |pv1/r ≤ Cp,r

∫
|f |p(MM |eµ|Msv)1/r

for all locally integrable v and all r, s > 1. To see that these inequalities will give
the desired conclusions, substitute vr for v in (∗). With this substitution, the
weight on the left becomes v and the weight on the right becomes MrM

eµ
r Mrsv,

which can then be replaced with the weight MtM
eµ
t Mtv for t = rs. This re-

placement works because the new weight is pointwise larger, as may be seen
using Hölder’s inequality with exponents s for the first two maximal operators
in the original weight. But this gives the result that we want to show, since t
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may be chosen as close to 1 as is wished, and similar substitutions will work
for Mµ.

The proof of (∗), (∗∗) follow by a bootstrapping argument from the following
result.

Lemma. Let 1 < p < 2, and suppose the inequality

(∗ ∗ ∗)
∫ (

M |σ|f
)p

v1/3 ≤ Cp,r

∫
|f |p(MM |eσ|Msv)1/r

holds for some exponents r = r0 > 1, and s = s̄ > 1. Then (∗) also holds for
all r > r1 and s > s̄, where 1

r1
= 1

r0
+ p

2 (1 − 1
r0

).

Since we know the unweighted bounds for M |σ|, we know (∗ ∗ ∗) for r0 = ∞
and any s̄ > 1. The lemma then gives (∗) for r > r1 = 2/p and s > s̄, and the
reduction in [15] of the maximal operator inequalities to the singular integral
operator inequalities then gives (∗∗) and (∗∗∗) for the same range of exponents.
We can now apply (∗ ∗ ∗) in the lemma with r > r1 in place of r0 to increase
the range of r even more. Fixing s > 1 and choosing a sequence of values
for s̄ > 1 which increase to s, we may repeat this argument inductively to see
that we can obtain (∗)–(∗ ∗ ∗) for r > rk, with rk defined inductively from the
initial value r0 = ∞ by 1

rk+1
= 1

rk
+ p

2 (1 − 1
rk

). Since rk ↓ 1, we therefore have
(∗)–(∗ ∗ ∗) for all r, s > 1.

Proof of the lemma. The result follows from the Littlewood-Paley argument in
[15] once we prove an l2-valued inequality in place of the one [15, (2.10)] which
is not proven for the case 1 < p < 2. To get this inequality, we first see that
the hypotheses of the lemma gives

(1)
∫ (

sup
j

|σj ∗ fj |
)p

v1/r0 ≤ Cp,r0

∫ (
sup

j
|fj |

)p

(MM |eσ|Msv)1/r0 ,

which follows from (∗ ∗ ∗) and the inequality supj |σj ∗ fj | ≤ M |σ|(supj |fj |).
We can also show the inequality

(2)

∫ ∑
j

|σj ∗ fj |pv ≤ Cp

∫ ∑
j

|fj |pM |eσ|v

≤ Cp

∫ ∑
j

|fj |pMM |eσ|Ms̄v.

The second line of this inequality follows by simply enlarging the weight on the
first line, and the first line follows once we show ∥σj ∗ f∥Lp(v) ≤ C∥f∥Lp(M |eσ|v)

uniformly in j. This in turn is shown by interpolating between the correspond-
ing bound at p = 1 (which follows easily by duality), and the trivial bound
∥σj ∗ f∥∞ ≤ C∥f∥∞.

Now, we may view the operation sending {fj}j∈Z into {σj ∗ fj}j∈Z as a
linear operator on the space of sequence-valued functions, so that (1) and (2)
are weighted lq-valued inequalities for this operator, taking q = ∞ and q = p
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respectively. When interpolating with change of measures between function
spaces of this type, the spaces that result are again weighted lq-valued function
spaces, with q being the corresponding interpolated value and with the weight
being the same as arises in the interpolation of the corresponding scalar-valued
weight spaces. This may by seen by a straightforward modification of the
scalar interpolation argument in [17] and a more general statement of this
interpolation property may be found in [18]. As a consequence of this kind of
interpolation between (1) and (2), we obtain the weighted l2-valued inequality

(S)
∫ ∑

j

|σj ∗ fj |2


p/2

v1/r1 ≤ C

∫ ∑
j

|fj |2


p/2

(MM eσ|Ms̄v)1/r1

for r1 as given in the statement of the theorem.
We now use the Littlewood-Paley argument of [15], with the square inequal-

ity appearing there being replaced in the case 1 < p < 2 by (S). This will give
the inequality

(∗′)
∫

|T σf |pv1/r1 ≤ Cp,r,s1,s2

∫
|f |p

{
Ms2(MM |eσ|MsMs1v)1/r1

}
for any s1, s2 > 1. This is essentially (∗) except that the weight on the
right is complicated by extra iterations of the operator Ms. We shall eliminate
these extra iterations using the Coifman-Rochberg inequality, which says that
whenever 0 < θ < 1,

M{(Mv)θ} ≤ Cθ(Mv)θ

for all locally integrable v, with constant independent of v. We first choose
s1 > s and s2 < r1 in (∗′), next we apply the Coifman-Rochberg inequality,
and then we relabel exponents, and this gives us (∗) for the desired range,
which completes the proof. ¤

Note. Of the Fourier transform requirements (1.9), (1.10) of [15] which are
placed upon the measures, the bound (1.9(i)) and the the first bound in (1.10)
typically arise as a consequence of a condition on the support of the measures.
An alternative proof for all p > 1 of the two-weight inequalities is sketched in
[20, Note in the proof of Theorem 4] under the stronger assumption that this
support condition holds.
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[13] J. Garćıa-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland Mathematics Studies, 116. Notas de Matematica [Mathematical
Notes], 104. North-Holland Publishing Co., Amsterdam, 1985.

[14] L. Grafakos and A. Stefanov, Lp bounds for singular integrals and maximal singular

integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455–469.
[15] S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough

operators, Indiana Univ. Math. J. 42 (1993), no. 1, 1–14.
[16] J. L. Rubio de Francia, F. J. Ruiz, and J. L. Torrea, Calderón-Zygmund theory for

operator-valued kernels, Adv. in Math. 62 (1986), no. 1, 7–48.
[17] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans.

Amer. Math. Soc. 87 (1958), 159–172.
[18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-

Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New
York, 1978.

[19] A. M. Vargas, Weighted weak type (1, 1) bounds for rough operators, J. London Math.

Soc. 54 (1996), no. 2, 297–310.
[20] D. K. Watson, Vector-valued inequalities, factorization, and extrapolation for a family

of rough operators, J. Funct. Anal. 121 (1994), no. 2, 389–415.

College of Science
Hangzhou Dianzi University

Hangzhou 310018, P. R. China
E-mail address: purezhang@hdu.edu.cn




