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CERTAIN WEIGHTED MEAN INEQUALITY
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ABSTRACT. In this paper, we report a new sharp inequality of interpolation type in Rn. This
inequality is for controlling weighted average of a function via Ln norm of the gradient of a
function together with its’ certain exponential norm.

1. INTRODUCTION

Inequalities of interpolation type are well-known nowadays and very important in studying
PDEs(See for instance [1, 3] and references therein). These inequalities bound roughly Lp

norm of a function itself by the derivatives of the function. Concretely, for a function u ∈
W 1,r(Rn), we have

∥u∥Lp ≤ C∥∇u∥tLr∥u∥1−t
Lr , r ≤ p ≤ p∗ ≡ nr

n− r
. (1.1)

Here, t ∈ [0, 1] is determined by p, r. But, this type of Sobolev inequality fails when p < r. In
fact, for a cutoff function ξ and large R > 0, if we take

u = Cξ(
|x|
R

), C > 0,

then ∥u∥Lp ∼ Rn/p, ∥∇u∥Lr ∼ R−1+n/r, ∥u∥Lr ∼ Rn/r and (1.1) fails asR→ ∞. However,
if we consider u which is average zero even under a weighted sense, such inequality remains
true in many cases by the Poincare inequality[2]. Thus, it is crucial to bound a weighted average
of a function if we want to have inequalities like (1.1). As far as the author knows, an inequality
with such spirit appears in [6] firstly and turns out to be helpful to problems in gauge theory.
The purpose of this paper is to report such inequality using certain exponential integral of a
function. That is,

|
∫
Rn

gv| ≤ 1

n
(
ωn

n
)(n−1)/n∥∇v∥Ln(Rn) [ln (X + 1) + C]

n−1
n + C (1.2)

for any v ∈ W 1,n. Here, g = (1 + |x|n)−2, X =
∫
Rn(e

−|v| − 1)2, and C is an absolute
constant depending only on n. In view of the already existing Poincare inequality, The above
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guarantees that Lp
loc, p ≤ np

n−p norm of v can be bounded by the RHS of (1.2). We also show
that (1.2) is sharp providing an example which do not satisfy (1.2) if we replace the coefficient
1
n(

ωn
n )(n−1)/n with any smaller constant. We finally remark that exponential integral in the

righthand side of (1.2) can be replaced with integral of similar bounded function. In fact, if we
replace (e−|v| − 1)2 with ϕ2(v) satisfying

ϕ(t) ≥ Cmin{1, t}, for t > 0,

(1.2) holds true due to∫
(e−|v| − 1)2 ≤ sup

t>0

(e−t − 1)2

ϕ2(t)

∫
ϕ2(v) ≤ C

∫
ϕ2(v).

2. WEIGHTED MEAN INEQUALITY

From now on, we omit the domain of integration if it is Rn. We also denote |x| = r and
g = (1 + rn)−2 as before. We first remind that symmetrization holds true for any nonnegative
smooth function with compact support.

Theorem 2.1. There exists C > 0 such that

|
∫
gv| ≤ 1

n
(
ωn

n
)(n−1)/n∥∇v∥Ln [ln (X + 1) + C](n−1)/n + C (2.1)

for v ∈W 1,n. Here, X is as before and ωn is the volume of the n− 1 dimensional unit sphere.

Proof) It is clear that

|
∫
gv| ≤ |

∫
g ×−|v||, ∥∇|v|∥Ln ≤ ∥∇v∥Ln .

Thus, it is enough to show (1.2) replacing v with −|v|. Since −|v| itself belongs to W 1,n, we
can assume v ≤ 0 without loss of generality. Then, it is again enough to show (1.2) for v ∈ C∞

0

with v ≤ 0 by the standard density theorem. If v is nonpositive and of compact support, we
can apply the symmetrization on −v. Let us denote the nonincreasing rearrangement of −v
by (−v)S . Clearly, v∗ ≡ −(−v)S is nondecreasing with respect to r. Further, g is decreasing
with respect to r and, due to v ≤ 0, 1− ev and 1− ev

∗
are equi-measurable. Therefore,∫

gv ≥
∫
gv∗,

∫
(ev − 1)2 =

∫
(ev

∗ − 1)2, ∥∇v∗∥Lr ≤ ∥∇v∥Lr .

Thus, it is enough to show (1.2) for radially symmetric nonpositive smooth v with compact
support.

Now, for R > 0,

v(r) = v(R) +

∫ r

R
∂sv(s)ds.

We multiply the above by g(r)rn−1 and integrate with respect to r on (0,∞) to get

LHS =

∫ ∞

0
v(r)g(r)rn−1dr,
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RHS =Cv(R) +

∫ ∞

0
g(r)rn−1

∫ r

R
∂sv(s)dsdr

=Cv(R) +

(∫ R

0
+

∫ ∞

R

)
g(r)rn−1

∫ r

R
∂sv(s)dsdr = Cv(R) + I + II. (2.2)

By the Fubini theorem,

|I| ≤
∫ R

0
|∇v(s)|

∫ s

0
g(r)rn−1drds =

∫ R

0
|∇v(s)| sn

n(1 + sn)
ds

≤ 1

n
ω
− 1

n
n ∥∇v∥Ln

(∫ R

0
(
sn−(n−1)/n

1 + sn
)

n
n−1ds

)(n−1)/n

,

|II| ≤
∫ ∞

R
|∂sv(s)|

∫ ∞

s
g(r)rn−1drds =

∫ ∞

R
|∂sv(s)|

1

n(1 + sn)
ds

≤ 1

n
ω
− 1

n
n ∥∇v∥Ln

(∫ ∞

R

1

s
(1 + sn)−

n
n−1ds

)(n−1)/n

Here, ωn is the volume of Sn−1. By change of variables sn = t, when R > 1,∫ R

0
(
sn−(n−1)/n

1 + sn
)

n
n−1ds =

1

n

∫ Rn

0
(

1

1 + t
)

n
n−1 t

1
n−1dt

≤ 1

n

∫ Rn

0

1

1 + t
=

1

n
ln(1 +Rn),∫ ∞

R

1

s
(1 + sn)−

n
n−1ds ≤ 1

n

∫ ∞

1

1

t
(1 + t)−

n
n−1dt ≤ C.

Thus, we get

|I|+ |II| ≤ n−
2n−1

n ω−1/n
n ∥∇v∥Ln(ln(C +Rn))(n−1)/n.

Meanwhile, we claim that for some C > 0, there exists R1 ≤ CX1/n such that v(R1) > −2.
Indeed, otherwise, we would have v(r) < −2 uniformly on the interval T ≡ [0, CX1/n].
Then,

X =

∫
(ev − 1)2dx ≥ ωn

4

∫
T
rn−1dr =

ωn

4n
CnX.

This gives a contradiction if we choose C > (4n/ωn)
1/n. Thus, the claim is proved. We take

R = R1 in (2.2) and arrive at

|
∫
gv| = ωn|

∫ ∞

0
gvrn−1dr| ≤ C +

1

n
(
ωn

n
)(n−1)/n∥∇v∥Ln((ln(C +Rn

1 ))
n−1
n + C).

Since R1 ≤ CX1/n, we arrive at the desired result redefining C suitably. �
Now, we give an example which shows the sharpness of (1.2). Consider the functions,
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ψ(x) =

 − lnR |x| ≤ 1
ln( r

R) 1 < |x| < R,
0 |x| ≥ R.

It is clear that

∥∇ψ∥Ln =

(
ωn

∫ R

1

1

rn
rn−1dr

)1.n

= (ωn lnR)
1/n,

X ∼ C + C

∫ R

1
(1− r

R
)2rn−1dr ∼ C + CRn,∫

gψ = ωn

∫ ∞

0

− lnR

(1 + rn)2
rn−1dr + C = C − ωn

n
lnR.

Thus, (1.2) fails for ψ as R→ ∞ if we replace 1
n(

ωn
n )(n−1)/n in (1.2) with smaller coefficient.
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