APPROXIMATION METHODS FOR A COMMON MINIMUM-NORM POINT OF A SOLUTION OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS IN BANACH SPACES

N. Shahzad and H. Zegeye

Abstract

We introduce an iterative process which converges strongly to a common minimum-norm point of solutions of variational inequality problem for a monotone mapping and fixed points of a finite family of relatively nonexpansive mappings in Banach spaces. Our theorems improve most of the results that have been proved for this important class of nonlinear operators.

1. Introduction

Let E be a real Banach space with dual E^{*}. We denote by J the normalized duality mapping from E into $2^{E^{*}}$ defined for each $x \in E$ by

$$
J x:=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2}=\left\|f^{*}\right\|^{2}\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing between members of E and E^{*}. It is well known that E is smooth if and only if J is single-valued and if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E. Moreover, if E is a reflexive and strictly convex real Banach space with a strictly convex dual, then J^{-1} is single valued, one-to-one, surjective, and it is the duality mapping from E^{*} into E and thus $J J^{-1}=I_{E^{*}}$ and $J^{-1} J=I_{E}$ (see [17]). If $E=H$, a real Hilbert space, then the duality mapping becomes the identity map on H.

Let E be a smooth real Banach space with dual E^{*}. Let the Lyapunov functional $\phi: E \times E \rightarrow \mathbb{R}$, introduced by Alber [1], be defined by

$$
\begin{equation*}
\phi(y, x)=\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2} \text { for } x, y \in E \text {, } \tag{1.1}
\end{equation*}
$$

[^0]where J is the normalized duality mapping from E into $2^{E^{*}}$. It is obvious from the definition of the function ϕ that
\[

$$
\begin{equation*}
(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2} \text { for } x, y \in E . \tag{1.2}
\end{equation*}
$$

\]

We observe that in a Hilbert space H, (1.1) reduces to $\phi(x, y)=\|x-y\|^{2}$ for $x, y \in H$.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty, closed and convex subset of E. The generalized projection mapping, introduced by Alber [1], is a mapping $\Pi_{C}: E \rightarrow C$ that assigns an arbitrary point $x \in E$ to the minimizer, \bar{x}, of $\phi(\cdot, x)$ over C, that is, $\Pi_{C} x=\bar{x}$, where \bar{x} is the solution to the minimization problem

$$
\begin{equation*}
\phi(\bar{x}, x)=\min \{\phi(y, x), y \in C\} \tag{1.3}
\end{equation*}
$$

If E is a Hilbert space, then $\Pi_{C}=P_{C}$ is the metric projection of H onto C.
In fact, we have the following result.
Lemma 1.1 ([1]). Let C be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space E and let $x \in E$. Then there exists a unique element $x_{0} \in C$ such that $\phi\left(x_{0}, x\right)=\min \{\phi(z, x): z \in C\}$.

Let C be a nonempty subset of a real Banach space E with dual E^{*}. A mapping $A: C \rightarrow E^{*}$ is said to be monotone if for each $x, y \in C$, the following inequality holds:

$$
\begin{equation*}
\langle x-y, A x-A y\rangle \geq 0 \tag{1.4}
\end{equation*}
$$

A is said to be γ-inverse strongly monotone if there exists a positive real number γ such that

$$
\begin{equation*}
\langle x-y, A x-A y\rangle \geq \gamma\|A x-A y\|^{2} \text { for all } x, y \in C . \tag{1.5}
\end{equation*}
$$

If A is γ-inverse strongly monotone, then it is Lipschitz continuous with constant $\frac{1}{\gamma}$, i.e., $\|A x-A y\| \leq \frac{1}{\gamma}\|x-y\|$ for all $x, y \in C$, and it is called strongly monotone if there exists $k>0$ such that

$$
\begin{equation*}
\langle x-y, A x-A y\rangle \geq k\|x-y\|^{2} \text { for all } x, y \in C \tag{1.6}
\end{equation*}
$$

Clearly, the class of monotone mappings includes the class of strongly monotone and the class of γ-inverse strongly monotone mappings.

Suppose that A is a monotone mapping from C into E^{*}. The variational inequality problem is formulated as finding
(1.7) a point $u \in C$ such that $\langle v-u, A u\rangle \geq 0$ for all $v \in C$.

The set of solutions of the variational inequality problem is denoted by $V I(C, A)$.
Variational inequality problems are related to the convex minimization problems, the zero of monotone mappings and the complementarity problems. Consequently, many researchers (see, eg, [4, 8, 9, 11, 20, 21]) have made efforts to obtain iterative methods for approximating solutions of variational inequality problems in the setting of Hilbert spaces or Banach spaces.

If $E=H$, a real Hilbert space, Iiduka, Takahashi and Toyoda [6] introduced the following projection algorithm:

$$
\begin{equation*}
x_{0}=w \in C, x_{n+1}=P_{C}\left(x_{n}-\alpha_{n} A x_{n}\right) \text { for any } n \geq 0 \tag{1.8}
\end{equation*}
$$

where P_{C} is the metric projection from H onto C and $\left\{\alpha_{n}\right\}$ is a sequence of positive real numbers. They proved that the sequence $\left\{x_{n}\right\}$ generated by (1.8) converges weakly to an element of $V I(C, A)$ provided that A is a γ-inverse strongly monotone mapping.

When E is a 2-uniformly convex and uniformly smooth Banach space, Iiduka and Takahashi [5] introduced the following iteration scheme for finding a solution of the variational inequality problem for a γ-inverse strongly monotone mapping A :

$$
\begin{equation*}
x_{n+1}=\Pi_{C} J^{-1}\left(J x_{n}-\alpha_{n} A x_{n}\right) \text { for any } n \geq 0 \tag{1.9}
\end{equation*}
$$

where Π_{C} is the generalized projection from E onto C, J is the normalized duality mapping from E into E^{*} and $\left\{\alpha_{n}\right\}$ is a sequence of positive real numbers. They proved that the sequence $\left\{x_{n}\right\}$ generated by (1.9) converges weakly to an element of $V I(C, A)$ provided that $V I(C, A) \neq \emptyset$ and A satisfies $\|A x\| \leq\|A x-A p\|$ for all $x \in C$ and $p \in V I(C, A)$.

We note that the convergence results obtained above are weak convergence. To obtain strong convergence, Iiduka and Takahashi [4], studied the following iterative scheme, in a 2-uniformly convex and uniformly smooth Banach space E, for a variational inequality problem for a γ-inverse strongly monotone mapping A :

$$
\left\{\begin{array}{l}
x_{0}=w \in K, \text { chosen arbitrary } \tag{1.10}\\
y_{n}=\Pi_{C} J^{-1}\left(J x_{n}-\alpha_{n} A x_{n}\right) \\
C_{n}=\left\{z \in E: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n}=\left\{z \in E:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=\Pi_{C_{n} \cap Q_{n}}\left(x_{0}\right), n \geq 1, \text { for } n \geq 0
\end{array}\right.
$$

where $\Pi_{C_{n} \cap Q_{n}}$ is the generalized projection from E onto $C_{n} \cap Q_{n}, J$ is the normalized duality mapping from E into E^{*} and $\left\{\alpha_{n}\right\}$ is a positive real sequence satisfying certain conditions. They proved that the sequence $\left\{x_{n}\right\}$ converges strongly to an element of $A^{-1}(0)$.

Remark 1.2. We remark that the computation of x_{n+1} in Algorithms (1.10) requires the computations of C_{n}, Q_{n} and $C_{n} \cap Q_{n}$ for each $n \geq 1$.

Remark 1.3. We note that, as it is mentioned in [24], if C is a subset of a real Banach space E and $A: C \rightarrow E^{*}$ is a monotone mapping satisfying $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$, then $V I(C, A)=A^{-1}(0)=$ $\{p \in C: A p=0\}$.

Let T be a mapping from C into itself. We denote by $F(T)$ the fixed points set of T. A point p in C is said to be an asymptotic fixed point of T (see [14]) if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that
$\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. The set of asymptotic fixed points of T will be denoted by $\hat{F}(T)$. A mapping T from C into itself is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for each $x, y \in C$, and is called relatively nonexpansive if (R1) $F(T) \neq \emptyset ;(\mathrm{R} 2) \phi(p, T x) \leq \phi(p, x)$ for $x \in C$ and (R3) $F(T)=\hat{F}(T)$. If E is a uniformly smooth and uniformly convex real Banach space, and $A \subset$ $E \times E^{*}$ is a maximal monotone mapping with $A^{-1}(0) \neq \emptyset$, then the resolvent $Q_{r}:=(J+r A)^{-1} J$, for $r>0$, is relatively nonexpansive (see [13]).

If $E=H$, a real Hilbert space, then the class of relatively nonexpansive mappings contains the class of nonexpansive mappings with $F(T) \neq \emptyset$ (see, eg, [25]).

In [3], Iduka and Takahashi studied the following iterative scheme for a common point of fixed point set of nonexpansive mapping and solution set of a variational inequality problem for a γ-inverse strongly monotone mapping A in a Hilbert space H :

$$
\left\{\begin{array}{l}
x_{0}=w \in C \tag{1.11}\\
x_{n+1}=\alpha_{n} w+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequences satisfying certain conditions. They proved that the sequence $\left\{x_{n}\right\}$ converges strongly to an element of $F:=F(S) \cap V I(C, A)$ provided that $F \neq \emptyset$.

In addition, many authors have considered the problem of finding a common element of the fixed point set of relatively nonexpansive mapping and the solution set of a variational inequality problem for γ-inverse monotone mapping A (see, e.g., $[10,16,18,20,21,23]$) which is nearest to the initial point $x_{0}=w$.

However, we notice that it is quite often to seek a minimum-norm solution of a given nonlinear problem. A point $\bar{x} \in C$, where C is a nonempty, closed and convex subset of a real Hilbert space H, is called a minimum-norm solution of a nonlinear problem with solution $F \neq \emptyset$ if and only if there exists $\bar{x} \in F$ satisfying the property that

$$
\begin{equation*}
\|\bar{x}\|=\min \{\|x\|: x \in F\} \tag{1.12}
\end{equation*}
$$

that is, \bar{x} is the nearest point projection of the origin onto F.
A typical example is the least-squares solution to the constrained linear inverse problem

$$
\left\{\begin{array}{l}
A x=b, \tag{1.13}\\
x \in C,
\end{array}\right.
$$

where A is a bounded linear operator from H into another real Hilbert space H_{1} and b is a given point in H_{1}. The least-squares solution to (1.13) is the solution of the following minimization problem with the minimum equal to zero:

$$
\begin{equation*}
\min _{x \in C} \frac{1}{2}\|A x-b\|^{2} \tag{1.14}
\end{equation*}
$$

Let Ω denote the (closed convex) solution set of (1.13) (or equivalently (1.14)). Then, in this case, Ω has a unique element \bar{x} if and only if it is a solution of
the following variational inequality:

$$
\begin{equation*}
\bar{x} \in C \text { such that }\left\langle A^{*}(A \bar{x}-b), x-\bar{x}\right\rangle \geq 0, x \in C, \tag{1.15}
\end{equation*}
$$

where A^{*} is the adjoint of A. In addition, we observe that inequality (1.15) can be rewritten as

$$
\begin{equation*}
\bar{x} \in C, \quad\left\langle\bar{x}-\gamma A^{*}(A \bar{x}-b)-\bar{x}, x-\bar{x}\right\rangle \leq 0, x \in C, \tag{1.16}
\end{equation*}
$$

where $\gamma>0$ is any positive scalar. In the terminology of projection, we see that (1.16) is equivalent to the fixed point equation

$$
\begin{equation*}
\bar{x}=P_{C}\left(\bar{x}-\gamma A^{*}(A \bar{x}-b)\right) . \tag{1.17}
\end{equation*}
$$

It is not hard to see that for $0<\gamma<\frac{2}{\|A\|^{2}}$, the mapping $x \rightarrow P_{C}(x-$ $\left.\gamma A^{*}(A x-b)\right)$ is nonexpansive. Therefore, finding the least-squares solution of the constrained linear inverse problem (1.13) is equivalent to finding the minimum-norm fixed point of the nonexpansive mapping $x \rightarrow P_{C}\left(x-\gamma A^{*}(A x-\right.$ b)).

Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $T_{i}: C \rightarrow C$, for $i=1,2, \ldots, N$, be relatively nonexpansive mapping and $A: C \rightarrow E^{*}$ be a continuous monotone mapping with $F:=\cap_{i=1}^{N} F(T) \cap V I(C, A) \neq \emptyset$.

It is our purpose in this paper to introduce an iterative scheme (see (3.1)) which converges strongly, to a minimum-norm (with respect to the generalized projection) point of F, that is, to a point $x^{*} \in F$ such that $x^{*}=\Pi_{F}(0)$. Our theorems improve most of the results that have been proved for this important class of nonlinear mappings.

2. Preliminaries

Let E be a Banach space and let $S(E)=\{x \in E:\|x\|=1\}$. Then a Banach space E is said to be smooth provided that the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}, \tag{2.1}
\end{equation*}
$$

exists for each $x, y \in S(E)$. The norm of E is said to be uniformly smooth if the limit (2.1) is attained uniformly for (x, y) in $S(E) \times S(E)$ (see [17]).

The modulus of convexity of E is the function $\delta_{E}:(0,2] \rightarrow[0,1]$ defined by

$$
\delta_{E}(\epsilon):=\inf \left\{1-\left\|\frac{x+y}{2}\right\|:\|x\|=\|y\|=1 ; \epsilon=\|x-y\|\right\} .
$$

E is called uniformly convex if and only if $\delta_{E}(\epsilon)>0$ for every $\epsilon \in(0,2]$.
In the sequel, we shall make use of the following lemmas.
Lemma 2.1 ([22]). Let C be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space E. If $A: C \rightarrow E^{*}$ is continuous monotone mapping, then $V I(C, A)$ is closed and convex.

Lemma 2.2 ([13]). Let E be a strictly convex and smooth Banach space, let C be a nonempty, closed and convex subset of E, and let T be a relatively nonexpansive mapping from C into itself. Then $F(T)$ is closed and convex.

Lemma 2.3 ([1]). Let K be a nonempty closed and convex subset of a real reflexive, strictly convex, and smooth Banach space E and let $x \in E$. Then $\forall y \in K$,

$$
\phi\left(y, \Pi_{K} x\right)+\phi\left(\Pi_{K} x, x\right) \leq \phi(y, x) .
$$

Lemma 2.4 ([8]). Let E be a real smooth and uniformly convex Banach space and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of E. If either $\left\{x_{n}\right\}$ or $\left\{y_{n}\right\}$ is bounded and $\phi\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$.

We make use of the function $V: E \times E^{*} \rightarrow \mathbb{R}$ defined by

$$
V\left(x, x^{*}\right)=\|x\|^{2}-2\left\langle x, x^{*}\right\rangle+\|x\|^{2} \text { for all } x \in E \text { and } x^{*} \in E,
$$

studied by Alber [1]. That is, $V(x, y)=\phi\left(x, J^{-1} x^{*}\right)$ for all $x \in E$ and $x^{*} \in E^{*}$. We know the following lemma.

Lemma 2.5 ([1]). Let E be a reflexive strictly convex and smooth Banach space with E^{*} as its dual. Then

$$
V\left(x, x^{*}\right)+2\left\langle J^{-1} x^{*}-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right)
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}$.
Lemma 2.6 ([1]). Let C be a convex subset of a real smooth Banach space E. Let $x \in E$. Then $x_{0}=\Pi_{C} x$ if and only if

$$
\left\langle z-x_{0}, J x-J x_{0}\right\rangle \leq 0, \forall z \in C
$$

Lemma 2.7 ([20]). Let E be a uniformly convex Banach space and $B_{R}(0)$ be a closed ball of E. Then, there exists a continuous strictly increasing convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\left\|\alpha_{0} x_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{N} x_{N}\right\|^{2} \leq \sum_{i=0}^{N} \alpha_{i}\left\|x_{i}\right\|^{2}-\alpha_{i} \alpha_{j} g\left(\left\|x_{i}-x_{j}\right\|\right)
$$

for $\alpha_{i} \in(0,1)$ such that $\sum_{i=0}^{N} \alpha_{i}=1$ and $x_{i} \in B_{R}(0):=\{x \in E:\|x\| \leq R\}$, for some $R>0$.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space E. Let $A \subseteq E \times E^{*}$ be a monotone mapping satisfying

$$
\begin{equation*}
D(A) \subset C \subset \cap_{r>0} J^{-1} R(J+r A) \tag{2.2}
\end{equation*}
$$

Then we have the following lemmas.

Lemma 2.8 ([2]). Let E be a smooth and strictly convex Banach space, C be a nonempty closed convex subset of E, and $A \subset E \times E^{*}$ a monotone operator satisfying (2.2). Let Q_{r} be the resolvent of A defined by $Q_{r}=(J+r A)^{-1} J$, for $r>0$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ such that $\lim _{n \rightarrow \infty} r_{n}=\infty$. If $\left\{x_{n}\right\}$ is a bounded sequence of C such that $Q_{r_{n}} x_{n} \rightharpoonup z$, then $z \in A^{-1}(0)$.

Lemma 2.9 ([7]). Let E be a smooth and strictly convex Banach space, C be a nonempty, closed and convex subset of E, and $A \subset E \times E^{*}$ a monotone operator satisfying (2.2) and $A^{-1}(0)$ is nonempty. Let Q_{r} be the resolvent of A defined by $Q_{r}=(J+r A)^{-1} J$ for $r>0$. Then for each $r>0$,

$$
\phi\left(p, Q_{r} x\right)+\phi\left(Q_{r} x, x\right) \leq \phi(p, x)
$$

for all $p \in A^{-1}(0)$ and $x \in C$.
Lemma 2.10 ([19]). Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$
a_{n+1} \leq\left(1-\beta_{n}\right) a_{n}+\beta_{n} \delta_{n}, n \geq n_{0}
$$

where $\left\{\beta_{n}\right\} \subset(0,1)$ and $\left\{\delta_{n}\right\} \subset R$ satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \beta_{n}=0, \sum_{n=1}^{\infty} \beta_{n}=\infty, \text { and } \limsup _{n \rightarrow \infty} \delta_{n} \leq 0
$$

Then, $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.11 ([12]). Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $a_{n_{i}}<a_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\left\{m_{k}\right\} \subset \mathbb{N}$ such that $m_{k} \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) numbers $k \in \mathbb{N}$:

$$
a_{m_{k}} \leq a_{m_{k}+1} \text { and } a_{k} \leq a_{m_{k}+1}
$$

In fact, $m_{k}=\max \left\{j \leq k: a_{j}<a_{j+1}\right\}$.

3. Main result

We now prove the following theorem.
Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a continuous monotone mapping satisfying (2.2) and $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$. Let $T_{i}: C \rightarrow C, i=1,2, \ldots, N$, be a finite family of relatively nonexpansive mappings. Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap V I(C, A)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.1}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1),\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$ and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

Proof. Let $p \in \Pi_{F}(0)$ and $w_{n}:=\left(J+r_{n} A\right)^{-1} J x_{n}:=Q_{r_{n}} x_{n}$. Then, since by Remark 1.3 we have that $p \in A^{-1}(0)$, from Lemma 2.9 we get that

$$
\phi\left(p, w_{n}\right)=\phi\left(p, Q_{r_{n}} x_{n}\right) \leq \phi\left(p, x_{n}\right) .
$$

Now from (3.1), Lemma 2.3 and property of ϕ and (3) we get that

$$
\begin{aligned}
\phi\left(p, y_{n}\right)= & \phi\left(p, \Pi_{C}\left(1-\alpha_{n}\right) w_{n}\right) \leq \phi\left(p,\left(1-\alpha_{n}\right) w_{n}\right) \\
= & \phi\left(p, J^{-1}\left(\alpha_{n} J 0+\left(1-\alpha_{n}\right) J w_{n}\right)\right. \\
= & \|p\|^{2}-2\left\langle p, \alpha_{n} J 0+\left(1-\alpha_{n}\right) J w_{n}\right\rangle+\left\|\alpha_{n} J 0+\left(1-\alpha_{n}\right) J w_{n}\right\|^{2} \\
\leq & \|p\|^{2}-2 \alpha_{n}\langle p, J 0\rangle-2\left(1-\alpha_{n}\right)\left\langle p, J w_{n}\right\rangle \\
& +\alpha_{n}\|J 0\|^{2}+\left(1-\alpha_{n}\right)\left\|J w_{n}\right\|^{2} \\
= & \alpha_{n} \phi(p, 0)+\left(1-\alpha_{n}\right) \phi\left(p, w_{n}\right) \\
\leq & \alpha_{n} \phi(p, 0)+\left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right) .
\end{aligned}
$$

Moreover, from (3.1), Lemma 2.3, Lemma 2.7, relatively nonexpansiveness of T and (3.2) we get that

$$
\begin{aligned}
\phi\left(p, x_{n+1}\right)= & \phi\left(p, \Pi_{C} J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right)\right. \\
\leq & \phi\left(p, J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right)\right. \\
= & \|p\|^{2}-2\left\langle p, \beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right\rangle+\left\|\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right\|^{2} \\
\leq & \|p\|^{2}-2 \beta_{0}\left\langle p, J y_{n}\right\rangle-2 \sum_{i=1}^{N} \beta_{i}\left\langle p, J T_{i} y_{n}\right\rangle \\
& +\beta_{0}\left\|J y_{n}\right\|^{2}+\sum_{i=1}^{N} \beta_{i}\left\|J T_{i} y_{n}\right\|^{2}-\beta_{0} \beta_{i} g\left(\| J y_{n}-T_{i} y_{n}\right) \\
= & \beta_{0} \phi\left(p, y_{n}\right)+\sum_{i=1}^{N} \beta_{i} \phi\left(p, T_{i} y_{n}\right)-\beta_{0} \beta_{i} g\left(\| J y_{n}-T_{i} y_{n}\right) \\
\leq & \beta_{0} \phi\left(p, y_{n}\right)+\left(1-\beta_{0}\right) \phi\left(p, y_{n}\right)-\beta_{0} \beta_{i} g\left(\| J y_{n}-T_{i} y_{n}\right) \\
\leq & \phi\left(p, y_{n}\right)-\beta_{0} \beta_{i} g\left(\| J y_{n}-T_{i} y_{n}\right) \\
\leq & \alpha_{n} \phi(p, 0)+\left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right)
\end{aligned}
$$

for each $i \in\{1,2, \ldots, N\}$. Thus, by induction,

$$
\phi\left(p, x_{n+1}\right) \leq \max \left\{\phi(p, 0), \phi\left(p, x_{0}\right)\right\}, \forall n \geq 0
$$

which implies that $\left\{x_{n}\right\}$ is bounded and hence $\left\{y_{n}\right\}$ and $\left\{w_{n}\right\}$ are bounded. Now let $z_{n}=\left(1-\alpha_{n}\right) w_{n}$. Then we note that $y_{n}=\Pi_{C} z_{n}$. Furthermore, since $\alpha_{n} \rightarrow 0$ we get that

$$
\begin{equation*}
z_{n}-w_{n}=\alpha_{n}\left(-w_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.5}
\end{equation*}
$$

Thus, using Lemma 2.3, Lemma 2.5 and property of ϕ we obtain that

$$
\begin{align*}
\phi\left(p, y_{n}\right) & \leq \phi\left(p, z_{n}\right)=V\left(p, J z_{n}\right) \\
& \leq V\left(p, J z_{n}-\alpha_{n}(J 0-J p)\right)-2\left\langle z_{n}-p,-\alpha_{n}(J 0-J p)\right\rangle \\
& =\phi\left(p, J^{-1}\left(\alpha_{n} J p+\left(1-\alpha_{n}\right) J w_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle\right. \\
& \leq \alpha_{n} \phi(p, p)+\left(1-\alpha_{n}\right) \phi\left(p, w_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle \\
& =\left(1-\alpha_{n}\right) \phi\left(p, w_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle \\
& \leq\left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle . \tag{3.6}
\end{align*}
$$

Furthermore, from (3.3) and (3.6) we have that

$$
\begin{align*}
\phi\left(p, x_{n+1}\right) \leq & \left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle \\
& -\beta_{0} \beta_{i} g\left(\left\|J y_{n}-J T_{i} y_{n}\right\|\right) \tag{3.7}\\
\leq & \left(1-\alpha_{n}\right) \phi\left(p, x_{n}\right)+2 \alpha_{n}\left\langle z_{n}-p, J 0-J p\right\rangle . \tag{3.8}
\end{align*}
$$

Now, we consider two cases:
Case 1. Suppose that there exists $n_{0} \in \mathbb{N}$ such that $\left\{\phi\left(p, x_{n}\right)\right\}$ is nonincreasing. In this situation, $\left\{\phi\left(p, x_{n}\right)\right\}$ is convergent. Then from (3.7) we have that

$$
\begin{equation*}
\beta_{0} \beta_{i} g\left(\left\|J y_{n}-J T_{i} y_{n}\right\|\right) \rightarrow 0 \tag{3.9}
\end{equation*}
$$

which implies, by the property of g that

$$
\begin{equation*}
J y_{n}-J T_{i} y_{n} \rightarrow 0 \text { as } n \rightarrow \infty, \tag{3.10}
\end{equation*}
$$

and hence, since J^{-1} is uniformly continuous on bounded sets we obtain that

$$
\begin{equation*}
y_{n}-T_{i} y_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, N\}$.
Furthermore, Lemma 2.3, property of ϕ and the fact that $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, imply that

$$
\begin{align*}
\phi\left(y_{n}, \Pi_{C} z_{n}\right) & \leq \phi\left(y_{n}, z_{n}\right) \\
& =\phi\left(y_{n}, J^{-1}\left(\alpha_{n} J 0+\left(1-\alpha_{n}\right) J w_{n}\right)\right. \\
& \leq \alpha_{n} \phi\left(y_{n}, 0\right)+\left(1-\alpha_{n}\right) \phi\left(w_{n}, w_{n}\right) \\
& \leq \alpha_{n} \phi\left(y_{n}, 0\right)+\left(1-\alpha_{n}\right) \phi\left(w_{n}, w_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.12}
\end{align*}
$$

and hence

$$
\begin{equation*}
y_{n}-z_{n} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.13}
\end{equation*}
$$

Since $\left\{z_{n}\right\}$ is bounded and E is reflexive, we choose a subsequence $\left\{z_{n_{i}}\right\}$ of $\left\{z_{n}\right\}$ such that $z_{n_{i}} \rightharpoonup z$ and $\lim \sup _{n \rightarrow \infty}\left\langle z_{n}-p, J w-J p\right\rangle=\lim _{i \rightarrow \infty}\left\langle z_{n_{i}}-p, J 0-J p\right\rangle$. Then, from (3.5) and (3.13) we get that

$$
\begin{equation*}
y_{n_{i}} \rightharpoonup z, w_{n_{i}} \rightharpoonup z \text { as } i \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Thus, since T satisfies condition (R3) we obtain from (3.11) that $z \in F\left(T_{i}\right)$ for each $i \in\{1,2, \ldots, N\}$ and hence $z \in \cap_{i=1}^{N} F\left(T_{i}\right)$. Furthermore, since $w_{n_{i}} \rightharpoonup z$, Lemma 2.8 implies that $z \in A^{-1}(0)$ and hence by Remark 1.3 we have that $z \in V I(C, A)$.

Thus, from the above discussions we obtain that $z \in F=\cap_{i=1}^{N} F\left(T_{i}\right) \cap$ $V I(C, A)$. Therefore, by Lemma 2.6, we immediately obtain that

$$
\limsup _{n \rightarrow \infty}\left\langle z_{n}-p, J 0-J p\right\rangle=\lim _{i \rightarrow \infty}\left\langle z_{n_{i}}-p, J 0-J p\right\rangle=\langle z-p, J 0-J p\rangle \leq 0 .
$$

It follows from Lemma 2.10 and (3.8) that $\phi\left(p, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Consequently, by Lemma 2.4 we get that $x_{n} \rightarrow p$.

Case 2. Suppose that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that

$$
\phi\left(p, x_{n_{i}}\right)<\phi\left(p, x_{n_{i}+1}\right)
$$

for all $i \in \mathbb{N}$. Then, by Lemma 2.11 , there exist a nondecreasing sequence $\left\{m_{k}\right\} \subset \mathbb{N}$ such that $m_{k} \rightarrow \infty, \phi\left(p, x_{m_{k}}\right) \leq \phi\left(p, x_{m_{k}+1}\right)$ and $\phi\left(p, x_{k}\right) \leq$ $\phi\left(p, x_{m_{k}+1}\right)$ for all $k \in \mathbb{N}$. Then from (3.7) and the fact that $\alpha_{n} \rightarrow 0$ we obtain that

$$
g\left(\left\|J y_{m_{k}}-J T_{i} y_{m_{k}}\right\|\right) \rightarrow 0, \text { as } k \rightarrow \infty
$$

for each $i \in\{1,2, \ldots, N\}$. Thus, using the same proof as in Case 1 , we obtain that $y_{m_{k}}-T_{i} y_{m_{k}} \rightarrow 0, y_{m_{k}}-z_{m_{k}} \rightarrow 0$, as $k \rightarrow \infty$, and hence we obtain that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle z_{m_{k}}-p, J 0-J p\right\rangle \leq 0 . \tag{3.15}
\end{equation*}
$$

Then from (3.8) we have that

$$
\begin{equation*}
\phi\left(p, x_{m_{k}+1}\right) \leq\left(1-\alpha_{m_{k}}\right) \phi\left(p, x_{m_{k}}\right)+2 \alpha_{m_{k}}\left\langle z_{m_{k}}-p, J 0-J p\right\rangle . \tag{3.16}
\end{equation*}
$$

Since $\phi\left(p, x_{m_{k}}\right) \leq \phi\left(p, x_{m_{k}+1}\right),(3.16)$ implies that

$$
\begin{aligned}
\alpha_{m_{k}} \phi\left(p, x_{m_{k}}\right) & \leq \phi\left(p, x_{m_{k}}\right)-\phi\left(p, x_{m_{k}+1}\right)+2 \alpha_{m_{k}}\left\langle z_{m_{k}}-p, J 0-J p\right\rangle \\
& \leq 2 \alpha_{m_{k}}\left\langle z_{m_{k}}-p, J 0-J p\right\rangle .
\end{aligned}
$$

In particular, since $\alpha_{m_{k}}>0$, we get

$$
\phi\left(p, x_{m_{k}}\right) \leq 2\left\langle z_{m_{k}}-p, J 0-J p\right\rangle .
$$

Then, from (3.15) we obtain that $\phi\left(p, x_{m_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$. This together with (3.16) gives $\phi\left(p, x_{m_{k}+1}\right) \rightarrow 0$ as $k \rightarrow \infty$. But $\phi\left(p, x_{k}\right) \leq \phi\left(p, x_{m_{k}+1}\right)$ for all $k \in \mathbb{N}$, thus we obtain that $x_{k} \rightarrow p$. Therefore, from the above two cases, we
can conclude that $\left\{x_{n}\right\}$ converges strongly to p which is the minimum-norm element of F and the proof is complete.

If in Theorem 3.1, we assume that $N=1$, then we get the following corollary.
Corollary 3.2. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a continuous monotone mapping satisfying (2.2) and $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$. Let $T: C \rightarrow C$ be a relatively nonexpansive mapping. Assume that $F:=F(T) \cap V I(C, A)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.17}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta J y_{n}+(1-\beta) J T y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1), \beta \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

If in Theorem 3.1, we assume that $T_{i} \equiv I$, for $i=1,2, \ldots, N$, identity map on C, then we get the following corollary.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a continuous monotone mapping satisfying (2.2) and $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$. Assume that $V I(C, A)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily } \tag{3.18}\\
x_{n+1}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right], \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1)$, and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0$, $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of $\operatorname{VI}(C, A)$.

We make use of Remark 1.3 to restate the above theorem.
Theorem 3.4. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a continuous monotone mapping satisfying (2.2) and $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$. Let $T_{i}: C \rightarrow C, i=1,2, \ldots, N$, be a finite family of relatively nonexpansive mappings. Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap A^{-1}(0)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.19}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1),\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

A monotone mapping $A \subset E \times E^{*}$ is said to be maximal monotone if its graph is not properly contained in the graph of any monotone mapping. We know that if A is maximal monotone mapping, then $A^{-1}(0)$ ia closed and convex (see [17] for more details). The following lemma is well-known.

Lemma 3.5 ([15]). Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty, closed and convex subset of E and let $A \subset E \times E^{*}$ be a monotone mapping. Then A is maximal if and only if $R(J+r A)=E^{*}$ for all $r>0$.

We note from the above lemma that if A is maximal, then it satisfies condition (2.2) and hence we have the following corollary.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a maximal monotone mapping. Let $T_{i}: C \rightarrow C, i=1,2, \ldots, N$, be a finite family of relatively nonexpansive mappings. Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap A^{-1}(0)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.20}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right), \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n} \in(0,1),\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

If in Corollary 3.6, we assume that $T_{i} \equiv I$, for $i=1,2, \ldots, N$, identity map on C, then we get the following corollary.

Corollary 3.7. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $A: C \rightarrow E^{*}$ be a maximal monotone mapping. Assume that $A^{-1}(0)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.21}\\
x_{n+1}=\Pi_{C}\left[\left(1-\alpha_{n}\right)\left(J+r_{n} A\right)^{-1} J x_{n}\right], \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n} \in(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0$, $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of $A^{-1}(0)$.

If in Theorem 3.1, we assume that $A \equiv 0$, then the assumption that E be 2 -uniformly convex may be relaxed. In fact, we have the following corollary.

Corollary 3.8. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $T_{i}: C \rightarrow C, i=$ $1,2, \ldots, N$, be a finite family of relatively nonexpansive mappings. Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily } \tag{3.22}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right) x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta_{0} J y_{n}+\sum_{i=1}^{N} \beta_{i} J T_{i} y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1)$ and $\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0$, $\sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$. Then $\left\{x_{n}\right\}$ converges strongly to the minimumnorm element of F.

If in Corollary 3.8, we assume that $N=1$, then we get the following corollary.
Corollary 3.9. Let C be a nonempty, closed and convex subset of a uniformly smooth and uniformly convex real Banach space E. Let $T: C \rightarrow C$, be a relatively nonexpansive mappings. Assume that $F(T)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily } \tag{3.23}\\
y_{n}=\Pi_{C}\left[\left(1-\alpha_{n}\right) x_{n}\right] \\
x_{n+1}=\Pi_{C} J^{-1}\left(\beta J y_{n}+(1-\beta) J T y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\beta \in(0,1)$ and $\alpha_{n} \in(0,1)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of $F(T)$.

If $E=H$, a real Hilbert space, then E is uniformly convex and uniformly smooth real Banach space. In this case, $J=I$, identity map on H and $\Pi_{C}=$ P_{C}, projection mapping from H onto C. Thus, the following corollaries hold.

Corollary 3.10. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A: C \rightarrow H$ be a continuous monotone mapping satisfying (2.2) and $\|A x\| \leq\|A x-A p\|, \forall x \in C$ and $p \in V I(C, A)$. Let $T_{i}: C \rightarrow C$, $i=1,2, \ldots, N$, be a finite family of nonexpansive mappings. Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap V I(C, A)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily } \tag{3.24}\\
y_{n}=P_{C}\left[\left(1-\alpha_{n}\right)\left(I+r_{n} A\right)^{-1} x_{n}\right] \\
x_{n+1}=P_{C}\left(\beta_{0} y_{n}+\sum_{i=1}^{N} \beta_{i} T_{i} y_{n}\right), \forall n \geq 0
\end{array}\right.
$$

where $\alpha_{n} \in(0,1),\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

Corollary 3.11. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let $A: C \rightarrow H$ be a maximal monotone mapping. Let $T_{i}: C \rightarrow C, i=1,2, \ldots, N$, be a finite family of nonexpansive mappings.

Assume that $F:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap A^{-1}(0)$ is nonempty. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C, \text { chosen arbitrarily, } \tag{3.25}\\
y_{n}=P_{C}\left[\left(1-\alpha_{n}\right)\left(I+r_{n} A\right)^{-1} x_{n}\right], \\
x_{n+1}=P_{C}\left(\beta_{0} y_{n}+\sum_{i=1}^{N} \beta_{i} T_{i} y_{n}\right), \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n} \in(0,1),\left\{\beta_{i}\right\}_{i=0}^{N} \subset[c, d] \subset(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{i=0}^{N} \beta_{i}=1$, and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

4. Application

In this section, we study the problem of finding a minimizer of a continuously Fréchet differentiable convex functional which has minimum-norm in Banach spaces. The following is deduced from Corollary 3.7.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth real Banach space. Let f be a continuously Fréchet differentiable convex functional on E and ∇f is maximal monotone with $F:=(\nabla f)^{-1}(0)=\{z \in E: f(z)=$ $\left.\min _{y \in E} f(y)\right\} \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily, } \tag{4.1}\\
x_{n+1}=\Pi_{C}\left(\left(1-\alpha_{n}\right)\left(J+r_{n} \nabla f\right)^{-1} J x_{n}\right),
\end{array}\right.
$$

where $\alpha_{n} \in(0,1)$ and $\left\{r_{n}\right\}$ a sequence of $(0, \infty)$ satisfying: $\lim _{n \rightarrow \infty} \alpha_{n}=0$, $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} r_{n}=\infty$. Then $\left\{x_{n}\right\}$ converges strongly to the minimum-norm element of F.

Remark 4.2. Our theorems improve most of the results that have been proved for these important class of non-linear mappings. In particular, Corollary 3.3 improves Theorem 3.1 of [5] and hence results of [6] in the sense that our convergence is strong in a more general class of continuous monotone mappings in a more general Banach spaces provided that A satisfies (2.2).

Moreover, Corollary 3.7 improves Theorem 3.3 of [4] in the sense that our convergence is valid in a more general Banach spaces that does not require computations of C_{n}, Q_{n} and $C_{n} \cap Q_{n}$ for each $n \geq 0$ provided that A is maximal monotone mapping.

In addition, Corollary 3.2 improves Theorem 3.1 of [3] in the sense that our convergence is for a more general class of relatively nonexpansive and continuous monotone mappings in a more general Banach spaces provided that A satisfies (2.2).

Acknowledgements. The authors thank the referee for his valuable comments and suggestions, which improved the presentation of this manuscript.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
[2] K. Aoyama, F. Kohsaka, and W. Takahashi, Proximal point method for monotone operators in Banach spaces, Taiwanese J. Math. 15 (2011), no. 1, 259-281.
[3] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive and α inverse strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350.
[4] , Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Anal. 68 (2008), no. 12, 3679-3688.
[5] ——, Weak convergence of projection algorithm for variational inequalities in Banach spaces, J. Math. Anal. Appl.; DOI:10.1016/j.jmaa.2007.07.019.
[6] H. Iiduka, W. Takahashi, and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamer. Math. J. 14 (2004), no. 2, 49-61.
[7] S. Kamimura, F. Kohsaka, and W. Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space, Set-Valued Anal. 12 (2004), no. 4, 417-429.
[8] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945.
[9] D. Kinderlehrer and G. Stampaccia, An Iteration to Variational Inequalities and Their Applications, Academic Press, New York, 1990.
[10] P. Kumam, A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping, Nonlinear Anal. Hybrid Syst. 2 (2008), no. 4, 1245-1255.
[11] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517.
[12] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912.
[13] S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257-266.
[14] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
[15] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898.
[16] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), no. 3, 359370.
[17] W. Takahashi, Nonlinear Functional Analysis, Kindikagaku, Tokyo, 1988.
[18] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009), no. 1, 45-57.
[19] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), no. 1, 109-113.
[20] H. Zegeye and E. U. Ofoedu, and N. Shahzad, Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasinonexpansive mappings, Appl. Math. Comput. 216 (2010), no. 12, 3439-3449.
[21] H. Zegeye and N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009), no. 7, 2707-2716.
[22] , A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal. 74 (2011), no. 1, 263-272.
[23] \qquad , A hybrid approximation method for equilibrium, variational inequality and fixed point problems, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 4, 619-630.
[24] \qquad , Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett. 5 (2011), no. 4, 691-704.
[25] H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal. 68 (2008), no. 10, 2977-2983.
N. Shahzad

Department of Mathematics
King Abdulaziz University
P.O.B. 80203, Jeddah 21589, Saudi Arabia

E-mail address: nshahzad@kau.edu.sa
H. Zegeye

Department of Mathematics
University of Botswana
Pvt. Bag 00704, Gaborone, Botswana
E-mail address: habtuzh@yahoo.com

[^0]: Received April 7, 2013; Revised May 21, 2013.
 2010 Mathematics Subject Classification. 47H05, 47H09, 47H10, 47J05, 47J25.
 Key words and phrases. monotone mappings, relatively nonexpansive mappings, strong convergence, variational inequality problems.

