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APPROXIMATION METHODS FOR A COMMON
MINIMUM-NORM POINT OF A SOLUTION OF
VARIATIONAL INEQUALITY AND FIXED POINT
PROBLEMS IN BANACH SPACES

N. SHAHZAD AND H. ZEGEYE

ABSTRACT. We introduce an iterative process which converges strongly
to a common minimum-norm point of solutions of variational inequality
problem for a monotone mapping and fixed points of a finite family of
relatively nonexpansive mappings in Banach spaces. Our theorems im-
prove most of the results that have been proved for this important class
of nonlinear operators.

1. Introduction

Let E be a real Banach space with dual E*. We denote by J the normalized
duality mapping from E into 2F" defined for each z € E by

Ju = {f* € B« (x, f*) = lall* = |1},

where (-, ) denotes the generalized duality pairing between members of E and
E*. Tt is well known that E is smooth if and only if J is single-valued and if
FE' is uniformly smooth, then J is uniformly continuous on bounded subsets of
E. Moreover, if E is a reflexive and strictly convex real Banach space with a
strictly convex dual, then J~! is single valued, one-to-one, surjective, and it
is the duality mapping from E* into E and thus JJ ! = Ig- and J~'J = Ig
(see [17]). If E = H, a real Hilbert space, then the duality mapping becomes
the identity map on H.

Let E be a smooth real Banach space with dual E*. Let the Lyapunov
functional ¢ : E x E — R, introduced by Alber [1], be defined by

(1.1) Oy, x) = llylI* = 2(y, Jz) + ||=|]* for z,y € E,
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where J is the normalized duality mapping from E into 28" . Tt is obvious from
the definition of the function ¢ that

(1.2) (lell = 1lyl)? < é(z,y) < (ll=]| +[lyl])* for 2,y € E.
We observe that in a Hilbert space H, (1.1) reduces to ¢(z,y) = ||z — y||? for
z,y € H.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty, closed and convex subset of E. The generalized projection mapping,
introduced by Alber [1], is a mapping Il : E — C that assigns an arbitrary
point z € E to the minimizer, Z, of ¢(-,x) over C, that is, [Icx = &, where Z
is the solution to the minimization problem

(1.3) ¢(z,2) = min{¢(y, ),y € C}.
If F is a Hilbert space, then IIc = P¢ is the metric projection of H onto C.
In fact, we have the following result.

Lemma 1.1 ([1]). Let C be a nonempty closed and convex subset of a real
reflexive, strictly conver, and smooth Banach space E and let x € E. Then
there exists a unique element xg € C such that ¢(xo, ) = min{¢(z,z) : z € C}.

Let C' be a nonempty subset of a real Banach space E with dual E*. A
mapping A : C — E* is said to be monotone if for each z,y € C, the following
inequality holds:

(1.4) (x —y, Az — Ay) > 0.

A is said to be y-inverse strongly monotone if there exists a positive real number
~ such that

(1.5) (x —y, Az — Ay) > ~||Ax — Ay||* for all 2,y € C.

If A is ~-inverse strongly monotone, then it is Lipschitz continuous with con-
stant %, ie., ||Az — Ay|| < %Hx —y|| for all z,y € C, and it is called strongly
monotone if there exists & > 0 such that

(1.6) (x —y, Az — Ay) > k||z — y||* forall 2,y € C.

Clearly, the class of monotone mappings includes the class of strongly monotone
and the class of y-inverse strongly monotone mappings.

Suppose that A is a monotone mapping from C into E*. The variational
inequality problem is formulated as finding

(1.7) a point u € C such that (v —u, Au) >0 for allv € C.

The set of solutions of the variational inequality problem is denoted by VI(C,A).

Variational inequality problems are related to the convex minimization prob-
lems, the zero of monotone mappings and the complementarity problems. Con-
sequently, many researchers (see, eg, [4, 8, 9, 11, 20, 21]) have made efforts to
obtain iterative methods for approximating solutions of variational inequality
problems in the setting of Hilbert spaces or Banach spaces.
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If E = H, areal Hilbert space, liduka, Takahashi and Toyoda [6] introduced
the following projection algorithm:

(1.8) 2o =w € C, rpy1 = Po(x, — ay,Axy,) for any n > 0,

where Pg is the metric projection from H onto C and {«,} is a sequence of
positive real numbers. They proved that the sequence {x,,} generated by (1.8)
converges weakly to an element of VI(C, A) provided that A is a y-inverse
strongly monotone mapping.

When F is a 2-uniformly convex and uniformly smooth Banach space, liduka
and Takahashi [5] introduced the following iteration scheme for finding a so-
lution of the variational inequality problem for a y-inverse strongly monotone
mapping A:

(1.9) Tpi1 = HeJ Y (Jz, — anAx,) for any n >0,

where Il¢ is the generalized projection from E onto C, J is the normalized
duality mapping from E into E* and {a,} is a sequence of positive real
numbers. They proved that the sequence {z,} generated by (1.9) converges
weakly to an element of VI(C, A) provided that VI(C, A) # () and A satisfies
[|Az|| < ||Az — Ap|| for all x € C' and p € VI(C, A).

We note that the convergence results obtained above are weak convergence.
To obtain strong convergence, liduka and Takahashi [4], studied the follow-
ing iterative scheme, in a 2-uniformly convex and uniformly smooth Banach
space F, for a variational inequality problem for a «-inverse strongly monotone
mapping A:

zg = w € K, chosen arbitrary,
yn = e Y(Jx, — anAxy,)

(1.10) Cpn={z€E:¢(z,yn) < d(2z,21)},
Qn=1{2z€E:{(x,— 2z Jxg— Jx,) > 0},
ZTn41 = e, nag, (x0),n > 1, for n > 0,

where Ilc, ng, is the generalized projection from E onto C, N @y, J is the
normalized duality mapping from E into E* and {«, } is a positive real sequence
satisfying certain conditions. They proved that the sequence {x,} converges
strongly to an element of A=1(0).

Remark 1.2. We remark that the computation of x,4; in Algorithms (1.10)
requires the computations of C),, @, and C, N @, for each n > 1.

Remark 1.3. We note that, as it is mentioned in [24], if C' is a subset of a
real Banach space F and A : C — E* is a monotone mapping satisfying
||[Az|| < ||Az — Ap||, Vz € C and p € VI(C, A), then VI(C, A) = A71(0) =
{peC: Ap=0}.

Let T be a mapping from C into itself. We denote by F(T') the fixed points
set of T. A point p in C is said to be an asymptotic fized point of T (see
[14]) if C contains a sequence {z,} which converges weakly to p such that
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lim, o0 || — Txn|] = 0. The set of asymptotic fixed points of T' will be
denoted by F(T) A mapping T from C into itself is said to be nonezpansive
if ||Tx—Ty|| < ||z —yl| for each z,y € C, and is called relatively nonexpansive
if (R1) F(T) # 0; (R2) ¢(p,Tx) < é(p, ) for z € C and (R3) F(T) = F(T).
If E is a uniformly smooth and uniformly convex real Banach space, and A C
E x E* is a maximal monotone mapping with A=1(0) # (), then the resolvent
Q= (J +1A)71J, for r > 0, is relatively nonexpansive (see [13]).

If F = H, a real Hilbert space, then the class of relatively nonexpansive
mappings contains the class of nonexpansive mappings with F(T') # () (see, eg,
25)).

In [3], Iduka and Takahashi studied the following iterative scheme for a
common point of fixed point set of nonexpansive mapping and solution set of
a variational inequality problem for a v-inverse strongly monotone mapping A
in a Hilbert space H:

{zowEC

(1.11) Tyl = opw + (1 — ) SPo (2 — MAxy,), n >0,

where {a,} is a sequences satisfying certain conditions. They proved that
the sequence {x,} converges strongly to an element of F' := F(S)NVI(C, A)
provided that F' # ().

In addition, many authors have considered the problem of finding a common
element of the fixed point set of relatively nonexpansive mapping and the solu-
tion set of a variational inequality problem for y-inverse monotone mapping A
(see, e.g., [10, 16, 18, 20, 21, 23]) which is nearest to the initial point xy = w.

However, we notice that it is quite often to seek a minimum-norm solution of
a given nonlinear problem. A point Z € C, where C is a nonempty, closed and
convex subset of a real Hilbert space H, is called a minimum-norm solution
of a nonlinear problem with solution F' # @ if and only if there exists £ € F
satisfying the property that

(1.12) [|Z|| = min{||z]|| : = € F},
that is, T is the nearest point projection of the origin onto F'.

A typical example is the least-squares solution to the constrained linear
inverse problem

Ax =b,
(1.13) { vec,

where A is a bounded linear operator from H into another real Hilbert space Hy
and b is a given point in Hy. The least-squares solution to (1.13) is the solution
of the following minimization problem with the minimum equal to zero:

1
1.14 in =||Az — b||.
(1.14) min 2| Az B

Let 2 denote the (closed convex) solution set of (1.13) (or equivalently (1.14)).
Then, in this case, {2 has a unique element T if and only if it is a solution of
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the following variational inequality:

(1.15) Z € C such that (A*(AZ —b),z —Z) >0, 2 € C,

where A* is the adjoint of A. In addition, we observe that inequality (1.15)
can be rewritten as

(1.16) zeC, (z—vyA"(Az —b)—Z,2—Z) <0, z€C,

where v > 0 is any positive scalar. In the terminology of projection, we see
that (1.16) is equivalent to the fixed point equation

(1.17) T = Po(z — vA*(AZ — b)).

It is not hard to see that for 0 < v < IIAQIIZ’ the mapping * — Pe(z —

~vA*(Az — b)) is nonexpansive. Therefore, finding the least-squares solution
of the constrained linear inverse problem (1.13) is equivalent to finding the
minimum-norm fixed point of the nonexpansive mapping x — Po(z—~vA*(Ax—
b)).

Let C be a nonempty, closed and convex subset of a uniformly smooth and
uniformly convex real Banach space F. Let T; : C — C, fori=1,2,..., N, be
relatively nonexpansive mapping and A : C' — E* be a continuous monotone
mapping with F := NY, F(T)NVI(C, A) # 0.

It is our purpose in this paper to introduce an iterative scheme (see (3.1))
which converges strongly, to a minimum-norm (with respect to the generalized
projection) point of F, that is, to a point 2* € F such that * = Iz (0). Our
theorems improve most of the results that have been proved for this important
class of nonlinear mappings.

2. Preliminaries

Let E be a Banach space and let S(E) = {« € E : ||z|| = 1}. Then a Banach
space F is said to be smooth provided that the limit

Ll tyl] — el

(2-1) t—0 t

)

exists for each 2,y € S(E). The norm of E is said to be uniformly smooth if
the limit (2.1) is attained uniformly for (z,y) in S(E) x S(E) (see [17]).
The modulus of convezity of E is the function dg : (0,2] — [0, 1] defined by

5p(c) = inf{l - H el = lll = 15 e = |w—y|}.

E is called uniformly convez if and ouly if 0g(e) > 0 for every e € (0,2].
In the sequel, we shall make use of the following lemmas.

z+y
2

Lemma 2.1 ([22]). Let C be a nonempty closed and convex subset of a real
reflexive, strictly convex, and smooth Banach space E. If A : C — E* is
continuous monotone mapping, then VI(C, A) is closed and convez.
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Lemma 2.2 ([13]). Let E be a strictly convexr and smooth Banach space, let
C be a nonempty, closed and convex subset of E, and let T be a relatively
nonezxpansive mapping from C into itself. Then F(T) is closed and conver.

Lemma 2.3 ([1]). Let K be a nonempty closed and convex subset of a real
reflexive, strictly convex, and smooth Banach space E and let x € E. Then
Yy € K,

Lemma 2.4 ([8]). Let E be a real smooth and uniformly convex Banach space
and let {xn} and {y,} be two sequences of E. If either {x,} or {y,} is bounded
and ¢(Tn,yn) = 0 as n — oo, then T, — y, — 0 as n — co.

We make use of the function V : E x E* — R defined by
V(z,z*) = ||z||* = 2(x,2*) + ||z||* for all z € E and 2* € E,

studied by Alber [1]. That is, V(z,y) = ¢(z, J 1z*) for all z € E and 2* € E*.
We know the following lemma.

Lemma 2.5 ([1]). Let E be a reflexive strictly convex and smooth Banach
space with E* as its dual. Then

V(z,z*) 4+ 2(J 2" —x,y*) < V(x,2* +y*)
forallz € E and z*,y* € E*.

Lemma 2.6 ([1]). Let C be a convex subset of a real smooth Banach space E.
Let x € E. Then xg = lcx if and only if

(z — o, Jo — Jxg) <0, Vz € C.

Lemma 2.7 ([20]). Let E be a uniformly convex Banach space and Bgr(0) be
a closed ball of E. Then, there exists a continuous strictly increasing conver
function g : [0,00) — [0,00) with g(0) =0 such that

N

llaozo + anas + -+ anan||* <Y allai||* — iy g(||zi — 24))

i=0
for a; € (0,1) such that ZZJ.V:O a; =1 and z; € Bg(0) :={z € E: ||z|| < R},
for some R > 0.

Let C' be a nonempty, closed and convex subset of a smooth, strictly convex
and reflexive Banach space E. Let A C E x E* be a monotone mapping
satisfying

(2.2) D(A) C C C NysoJ 'R(J +7A).

Then we have the following lemmas.
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Lemma 2.8 ([2]). Let E be a smooth and strictly convex Banach space, C' be
a nonempty closed convex subset of E, and A C E x E* a monotone operator
satisfying (2.2). Let Q. be the resolvent of A defined by Q, = (J+rA)~1J, for
r >0 and {r,} a sequence of (0,00) such that limy, oo rr, = 00. If {2,} is a
bounded sequence of C such that Q,, x, — z, then z € A=1(0).

Lemma 2.9 ([7]). Let E be a smooth and strictly convexr Banach space, C
be a nonempty, closed and convex subset of E, and A C E x E* a monotone
operator satisfying (2.2) and A=1(0) is nonempty. Let Q, be the resolvent of
A defined by Q, = (J +rA)~YJ for r > 0. Then for each r > 0,

o(p, Qrz) + $(Qrx, ) < (P, T)
for allp e A=1(0) and x € C.

Lemma 2.10 ([19]). Let {a,} be a sequence of nonnegative real numbers sat-
isfying the following relation:

An+1 S (1 - ﬂn)an + /Bn(sny n Z no,
where {8} C (0,1) and {6,} C R satisfying the following conditions:

lim B, =0, Zﬂn =00, and limsupd, < 0.
n—oo p— n—oo

Then, lim, o0 a, = 0.

Lemma 2.11 ([12]). Let {a,} be a sequence of real numbers such that there
exists a subsequence {n;} of {n} such that an, < an,+1 for all i € N. Then
there exists a nondecreasing sequence {mr} C N such that mi — oo and the
following properties are satisfied by all (sufficiently large) numbers k € N:

Amy, < Q41 and ap < Q41

In fact, mp = max{j < k:a; < ajy}.

3. Main result
We now prove the following theorem.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
continuous monotone mapping satisfying (2.2) and ||Ax|| < ||Axz—Ap||, Yz € C
and p € VI(C,A). LetT; : C — C, i = 1,2,...,N, be a finite family of
relatively nonexpansive mappings. Assume that F := NN F(T;) N VI(C, A) is
nonempty. Let {x,} be a sequence generated by

xg € C, chosen arbitrarily,
(3.1) Yo = [(1 = an)(J 4+ rpA) "1,
o1 =od " (BoTyn + Yiey Bid Tiyn), ¥n > 0,
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where o, € (0,1), {8}, C [e,d] C (0,1) and {rn} a sequence of (0,00)
satisfying: iy, oo 0y = 0, Y00 |y, = 00, Zi]\;o B; = 1 and lim,—oo 7 = 00.
Then {x,} converges strongly to the minimum-norm element of F.

Proof. Let p € Ip(0) and w,, := (J +r,A)~ Jx, := Q,, v,. Then, since by
Remark 1.3 we have that p € A71(0), from Lemma 2.9 we get that

(b(pa wn) = ¢(pa anxn) < ¢(pa .Tn)

Now from (3.1), Lemma 2.3 and property of ¢ and (3) we get that

o, yn) = o(p, e (1 — an)wy) < ¢(p, (1 — an)wn)
= ¢(p, J N anJO + (1 — o) Jwy,)
= Ipl|? = 2(p, an JO + (1 — ) Jwy,) + ||an JO + (1 — ) Jwy ||?
< lpl? = 2an(p, JO) = 2(1 = ) (p, Jwy)
+ an||J0]* + (1 = a) [ Jw,|[*
n)

w

= an¢(pa 0) + (1 - Oé,J(b(p,
(32) < and(p,0) + (1 —an)o(p,

Moreover, from (3.1), Lemma 2.3, Lemma 2.7, relatively nonexpansiveness of
T and (3.2) we get that

N
$(p, wni1) = 6(p, e~ (BoTyn + > Bid Tiyn)

i=1

N
< ¢(p, T (BoTyn + Y _ Bid Tiyn)

i=1

N N
= ||p||2 - 2<p; BoJYn + ZﬂzJszn> + ||ﬂOJyn + ZﬂzJsznHQ

1=1 1=1
N
< |IplI* = 280(p, Jyn) =2 Bilp, JTiyn)
i=1
N
+ Bol|Tynl|? + ZﬁiHJTiynHQ — BoBig(|[Jyn — Tiyn)
im1

N
= Bod(pyn) + > Bid (. Tiym) — BoBig (|| Jym — Tiym)

=1
< Bod(p,yn) + (1 = Bo)d(, yn) — BoBig(||Tyn — Tiyn)
< 0D, yn) — BoBig(||Tyn — Tiyn)
< an¢(pa 0) + (1 - an)¢(pa xn)

A
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for each i € {1,2,..., N}. Thus, by induction,

¢(p5 xn-‘,—l) S maX{¢(p’ 0)) ¢(pa ‘TO)}) vn Z Oa

which implies that {x,} is bounded and hence {y,} and {w,} are bounded.
Now let z, = (1 — ap)wy,. Then we note that y,, = Ilgz,. Furthermore, since
an, — 0 we get that

(3.5) Zn — Wy = ap(—wy) — 0 as n — co.

Thus, using Lemma 2.3, Lemma 2.5 and property of ¢ we obtain that
< V(p, Jzp — an(JO - Jp)) - 2<Zn - D 70471(‘]0 - Jp)>
= o(p, J M anp + (1 — ap)Jwy) + 20, (2n, — p, JO — Jp)
< an¢(pap) + (1 - an)¢(pv wn) + 2an<zn -p,JO— Jp>
= (1 - O‘n>¢(pv wn) + 2an<zn - p, JO — Jp>

(3.6) < (1= 0n)b(p, n) + 20 (2n — p, JO — Jp).

Furthermore, from (3.3) and (3.6) we have that

(b(pa xn—i—l) < (1 - an)¢(pa xn) + 2an<zn -p,JO— Jp>

(3.7) = BoBig(|Tyn — JTiynl|)

(38) < (1 7an)¢(pazn> +2an<zn - b JO*Jp>

Now, we consider two cases:

Case 1. Suppose that there exists ng € N such that {¢(p,z,)} is non-
increasing. In this situation, {¢(p,zy,)} is convergent. Then from (3.7) we
have that

which implies, by the property of g that
(3.10) JYn — JTiy, — 0 as n — oo,
and hence, since J ! is uniformly continuous on bounded sets we obtain that
(3.11) Yn — Tiyn — 0 as n — o0
for each i € {1,2,...,N}.
Furthermore, Lemma 2.3, property of ¢ and the fact that o,, — 0 as n — oo,
imply that
(yn: e zn) < G(Yn, 2n)
= ¢(Yn, I (@nJO+ (1 — ap) Jwy,)
< an¢(yna 0) + (1 - an)¢(wn; wn)
(3.12) < an®(Yn, 0) + (1 — an)p(wy, wy) — 0 as n — oo,
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and hence
(3.13) Yn — 2n — 0 as n — oo.

Since {z,} is bounded and FE is reflexive, we choose a subsequence {z,,} of {2}
such that z,, — z and limsup,,_, . (zn —p, Jw—Jp) = lim;_, o {2n, —p, JO—JD).
Then, from (3.5) and (3.13) we get that

(3.14) Yn; — 2, Wy, — 2z a8 i — 00.

i

Thus, since T satisfies condition (R3) we obtain from (3.11) that z € F(T;) for
each i € {1,2,..., N} and hence z € NY_, F(T;). Furthermore, since w,, — z,
Lemma 2.8 implies that z € A71(0) and hence by Remark 1.3 we have that
z e VI(C,A).

Thus, from the above discussions we obtain that z € F = N, F(T};) N
VI(C, A). Therefore, by Lemma 2.6, we immediately obtain that

lim sup(z, — p, JO — Jp) = l_i}m (2n; —p, JO— Jp) = (z — p, JO— Jp) < 0.

n—oo K2 o0
It follows from Lemma 2.10 and (3.8) that ¢(p,z,) — 0 as n — oo. Conse-
quently, by Lemma 2.4 we get that x,, — p.

Case 2. Suppose that there exists a subsequence {n;} of {n} such that

(P, wn,) < AP, Tn,+1)

for all ¢ € N. Then, by Lemma 2.11, there exist a nondecreasing sequence
{mr} C N such that mi — 00, ¢(p,Tm,) < OP,Tm,+1) and ¢(p,xr) <
d(Py Tmy+1) for all k& € N. Then from (3.7) and the fact that a,, — 0 we
obtain that

91 Tymy, = JTiym,||) = 0, as k — o0

for each i € {1,2,..., N}. Thus, using the same proof as in Case 1, we obtain
that ¥m, — LiYm, — 0, Ym, — 2m, — 0, as k — oo, and hence we obtain that
(3.15) lim sup(zpm, — p, JO— Jp) < 0.

k—o0

Then from (3.8) we have that
(3.16) (P, Tmyt1) < (1 — @) @D, Ty, ) + 200, (2my, — p, JO — Jp).
Since ¢(p, Tm,,) < (D, Tmy+1), (3.16) implies that
Oy O(D Tm,,) <SP, Tmy,) — G(Ps Tmy41) + 200, (2, — P, JO — Jp)
< 200m,, (Zm, — 0, JO — Jp).
In particular, since o, > 0, we get
¢(p: Tmy) < 2(zm,, —p, JO— Jp).

Then, from (3.15) we obtain that ¢(p, T, ) — 0 as k — co. This together with
(3.16) gives ¢(p, Tm,+1) — 0 as k — oo. But ¢(p,z) < ¢(p, Tm,+1) for all
k € N, thus we obtain that x; — p. Therefore, from the above two cases, we
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can conclude that {x,} converges strongly to p which is the minimum-norm
element of F' and the proof is complete. O

If in Theorem 3.1, we assume that N = 1, then we get the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
continuous monotone mapping satisfying (2.2) and ||Ax|| < ||Axz—Ap||, Yz € C
and p € VI(C,A). Let T : C — C be a relatively nonexpansive mapping.
Assume that F = F(T)NVI(C,A) is nonempty. Let {x,} be a sequence
generated by

xg € C, chosen arbitrarily,
(3.17) yn = g [(1 —an)(J+ TnA)_len},
Tni1 = U H(BJyn + (1 — B)JTyy),¥n > 0,

where o, € (0,1), 8 C [e,d] C (0,1) and {r,} a sequence of (0,00) satisfying:
limy, oo ap = 0, 220:1 an = 00, and lim, oo, = 00. Then {x,} converges
strongly to the minimum-norm element of F.

If in Theorem 3.1, we assume that T; = I, for i = 1,2,..., N, identity map
on C, then we get the following corollary.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
continuous monotone mapping satisfying (2.2) and ||Az|| < ||Az—Ap||, Vz € C
andp € VI(C, A). Assume that VI(C, A) is nonempty. Let {x,} be a sequence
generated by

(3.18) { xo € C, chosen arbitrarily,

Tl = Hc[(l —ap)(J+ TnA)’lJzn}, Yn > 0,

where ay, € (0,1), and {r,} a sequence of (0,00) satisfying: lim,, oo a,, = 0,
Zzozl an = 00, and lim, oo 1, = 00. Then {x,} converges strongly to the
minimum-norm element of VI(C, A).

We make use of Remark 1.3 to restate the above theorem.

Theorem 3.4. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
continuous monotone mapping satisfying (2.2) and ||Az|| < ||Az—Ap||, Vz € C
and p € VI(C,A). LetT;, : C —» C, i =1,2,...,N, be a finite family of
relatively nonexpansive mappings. Assume that F := N F(T;) N A=(0) is
nonempty. Let {x,} be a sequence generated by

xg € C, chosen arbitrarily,
(3.19) Yo = [(1 = an)(J + rpA) "1,
Tpi1 = e H(BoJyn + vazl BiJTiyn), ¥n >0,
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where o, € (0,1), {8}, C [e,d] C (0,1) and {rn} a sequence of (0,00)
satzsfymg lim, o0 ap = 0, Zzozl Qp = OO, ZZI\LO ﬁz =1, and limy, ;o0 7 = 00.
Then {x,} converges strongly to the minimum-norm element of F.

A monotone mapping A C E x E* is said to be mazimal monotone if
its graph is not properly contained in the graph of any monotone mapping.
We know that if A is maximal monotone mapping, then A=1(0) ia closed and
convex (see [17] for more details). The following lemma is well-known.

Lemma 3.5 ([15]). Let E be a smooth, strictly convex and reflexive Banach
space, let C' be a nonempty, closed and convex subset of E and let A C E x E*
be a monotone mapping. Then A is maximal if and only if R(J +rA) = E*
for all r > 0.

We note from the above lemma that if A is maximal, then it satisfies condi-
tion (2.2) and hence we have the following corollary.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
mazimal monotone mapping. LetT; : C — C,i=1,2,..., N, be a finite family
of relatively nonexpansive mappings. Assume that F := NN, F(T;) N A~1(0) is
nonempty. Let {x,} be a sequence generated by

xg € C, chosen arbitrarily,
(3.20) Yo = o [(1 = an)(J + rpA) "1,
Tpg1 = e HBoJyn + vazl BiJTiyn), Vn >0,

where o, € (0,1), {8}y C [e,d] € (0,1) and {r,} a sequence of (0,00)

satisfying: limy, o oy = 0, 22021 Qp = 00, Zizo Bi =1, and lim, o, 7, = 00.
Then {x,} converges strongly to the minimum-norm element of F.

If in Corollary 3.6, we assume that T; = I, for i = 1,2,..., N, identity map
on C, then we get the following corollary.

Corollary 3.7. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let A : C — E* be a
mazimal monotone mapping. Assume that A=(0) is nonempty. Let {x,} be a
sequence generated by

(3.21) xg € C, chosen arbitrarily,
) Tnal :HC[(lfozn)(JernA)’lJzn}, Vn > 0,

where oy, € (0,1) and {rn,} a sequence of (0,00) satisfying: lim, o ayn = 0,
Yoo o = 00 and lim, o1, = co0. Then {x,} converges strongly to the
minimum-norm element of A=1(0).

If in Theorem 3.1, we assume that A = 0, then the assumption that FE be
2-uniformly convex may be relaxed. In fact, we have the following corollary.
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Corollary 3.8. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let T; : C — C, i =
1,2,...,N, be a finite family of relatively nonexpansive mappings. Assume
that F := NN, F(T;) is nonempty. Let {x,} be a sequence generated by

xg € C, chosen arbitrarily,
(3.22) yn = e [(1 - an)zn],
Tngr = e H(BoJyn + Zi]\il BiJTiyn), ¥n >0,

where o, € (0,1) and {8}, C [e,d] C (0,1) satisfying: lim, . a, = 0,
S o = 00, Zi]\io B:; = 1. Then {z,} converges strongly to the minimum-
norm element of F.

If in Corollary 3.8, we assume that N = 1, then we get the following corollary.

Corollary 3.9. Let C be a nonempty, closed and convex subset of a uniformly
smooth and uniformly convex real Banach space E. Let T : C — C, be a
relatively nonexpansive mappings. Assume that F(T) is nonempty. Let {x,}
be a sequence generated by

xg € C, chosen arbitrarily,
(3.23) yn = o [(1 - an)xn},
Tny1 = e H(BJyn + (1 — B)JTyn),¥n > 0,

where B € (0,1) and a,, € (0,1) satisfying: lim, ooy = 0, > 00 |y = 00.
Then {x,} converges strongly to the minimum-norm element of F(T).

If E = H, a real Hilbert space, then E is uniformly convex and uniformly
smooth real Banach space. In this case, J = I, identity map on H and IIo =
P¢, projection mapping from H onto C. Thus, the following corollaries hold.

Corollary 3.10. Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Let A: C — H be a continuous monotone mapping satisfying
(2.2) and ||Az|| < ||Ax — Apl||, Vo € C and p € VI(C,A). LetT; : C — C,
i = 1,2,...,N, be a finite family of nonerpansive mappings. Assume that
F:=nN,F(T;)NVI(C,A) is nonempty. Let {x,} be a sequence generated by

xg € C, chosen arbitrarily,
(3.24) Yn = Po[(1—an)(I +rpA) oy,
Tn+1 = PC(ﬂoyn + sz\il Bszyn); n Z 0;

where o, € (0,1), {8}, C [e,d] C (0,1) and {rn} a sequence of (0,00)
satzsfymg lim, o0 oy = 0, 220:1 Qp = OO, ZZ\LO 51 =1, and limy, ;o0 7 = 00.
Then {x,} converges strongly to the minimum-norm element of F.

Corollary 3.11. Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Let A : C — H be a mazimal monotone mapping. Let
T, : C - C,i=1,2,...,N, be a finite family of nonexpansive mappings.
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Assume that F := NN, F(T;) N A=Y(0) is nonempty. Let {z,} be a sequence
generated by

xg € C, chosen arbitrarily,
(3.25) yn = Po [(1 —a,)(I 4+ rnA)_lacn],
Tnt1 = Po(Boyn + sz\il BiTiyn), ¥n >0,

where o, € (0,1), {Bi}Ny C [e,d] C (0,1) and {r,} a sequence of (0,00)
satisfying: limp, o0 iy, = 0, Y00 |y = 00, Zi]\;o Bi =1, and lim,, o0 T = 00.
Then {x,} converges strongly to the minimum-norm element of F.

4. Application

In this section, we study the problem of finding a minimizer of a continuously
Fréchet differentiable convex functional which has minimum-norm in Banach
spaces. The following is deduced from Corollary 3.7.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth real Banach
space. Let f be a continuously Fréchet differentiable convex functional on E
and <7 f is mazimal monotone with F = (7 f)7*0) = {z € E : f(2) =
minger f(y)} # 0. Let {x,} be a sequence generated by

(4.1) { xg € C chosen arbitrarily,

Tnp1 = o (1 —an)(J 4+ 7 f) " zn),

where oy, € (0,1) and {rn,} a sequence of (0,00) satisfying: lim, o oy = 0,
S o = 00 and lim,_oo 1, = 00. Then {x,} converges strongly to the
minimum-norm element of F.

Remark 4.2. Our theorems improve most of the results that have been proved
for these important class of non-linear mappings. In particular, Corollary 3.3
improves Theorem 3.1 of [5] and hence results of [6] in the sense that our
convergence is strong in a more general class of continuous monotone mappings
in a more general Banach spaces provided that A satisfies (2.2).

Moreover, Corollary 3.7 improves Theorem 3.3 of [4] in the sense that our
convergence is valid in a more general Banach spaces that does not require
computations of C, @, and C, N @, for each n > 0 provided that A is
maximal monotone mapping.

In addition, Corollary 3.2 improves Theorem 3.1 of [3] in the sense that our
convergence is for a more general class of relatively nonexpansive and contin-
uous monotone mappings in a more general Banach spaces provided that A
satisfies (2.2).

Acknowledgements. The authors thank the referee for his valuable com-
ments and suggestions, which improved the presentation of this manuscript.
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