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LOCAL AND NORM BEHAVIOR
OF BLOWUP SOLUTIONS TO A
PARABOLIC SYSTEM OF CHEMOTAXIS

"TAKASI SENBA AND TAKASHI SUZUKI

ABSTRACT. We study a parabolic system of chemotaxis introduced
by E. F. Keller and L. A. Segel. First, norm behaviors of the blow-up
solution are proven. Then some kind of symmetry breaking and the
concentration toward the boundary follow when the L} norm of the
initial value is less than 87. Meanwhile a method of rearrangement
is proposed to prove an inequality of Trudinger-Moser’s type.

1. Introduction

In 1970, E. F. Keller and L. A. Segel [8] proposed a system of parabolic
equations to describe the aggregation of some organisms sensitive to the
gradient of a chemical substance. In a simplified form of Nanjundiah

[14], it is given as

( Ou
i V(Vu — xuVv) in €, t >0,
(KS) J T% =Av — v+ au in £, t>0,
du v
b A 0
B o 0 on O, t=>0,
u(-,0) =up, v(,0)=1v on

where

1. 7, @,y and yx are positive constants
2. Q2 is a bounded domain of R? with smooth boundary ofl
3. ug # 0 and vy are smooth and nonnegative functions on €.
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Here, u(z,t) and v(z,t) denote the density of the organisms and the
concentration of the chemical substance, respectively. In use of the semi-
group theory, we can prove the existence and uniqueness of the classical
solution locally in time, and its regularity and positivity also (Yagi [17],
Biler {1]). On the other hand, the asymptotic behavior of the solution,
particularly the blowup mechanism, has attracted interests from both
mathematical and biological sides.

Simplified forms are proposed, replacing the second equation by the
elliptic one, just putting 7 = 0 (Nagai [11]) or taking

O:Av+a(u_][ ug),
Q

where f, = gy fo- (Jéger and Luckhaus [7]). In such systems, the

blowup mechanism is understood better. For instance, in the former, we
have the estimate

2 x { (interior blowup points) + f(boundary blowup points)
(1) < ax|luoll, /47
as a result of the chemotactic collapse at each blowup point ([16]). Here
and henceforth, || - ||, denotes the standard L” norm. Not so much is
known for the full system (KS) but the following are proven by Her-

rero and Velazquez [6], Nagai, Senba, and Yoshida {13], Biler [1], and
Gajewski and Zacharias [5]. Let T, be the blowup time.

1. The conditions
luoll, <d4r/{ax)  and  |luoll; < 8/(ax)

imply Tiax = +oc for the general and the radial cases, respectively.
2. There is a family of radial solutions satisfying

u(z, t)dr -~ 8ndo(dx) + f(z) dx

as t T Tmax < +00, where f(z) is a nonnegative L! function.

Those results suggest inequality (1) even for the system (KS).

The first theorem of the present paper shows a fundamental, but never
trivial fact. It is on the norm behavior of blowup solutions. Henceforth,
we put 7 = o = v = x = 1 for simplicity.
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THEOREM 1. If Ty < +00, we have
. T o 2_ av _
@ Jm lwlogul, = im fuol, = g 90l = tim [ e = o,
where a > 1.

In particular, it follows that limyy,,, [|u(t)|,, = Hmer,,, |[v(8)]]
+o0.

If limy,,,, is replaced by limsup,y_ , the above conclusions are al-
ready known. They are also known for the simplified systems described
before. See [12] and [16], respectively, for those facts.

We also show the following theorems supporting the validity of (1)
for (KS).

0 =

THEOREM 2. Let ) be the unit disc, |upl|, < 8, and
up{z) = up{—z), wolxr) = vo(—x).

Then (KS) admits a uniformly bounded classical solution, globally in
time.

THEOREM 3. If(Q is simply connected, ||up||, < 87, and Tiax < 400,
it holds that

(3) lim [ e = +o0.
UELEEY

Those theorems say that if T < +oo occurs with [lug)|, < 8,
then some kind of symmetry breaking and the concentration toward the
boundary are observed to the solution.

We mention some technical facts, where (u, v) denotes the solution of
(KS) . First, L! norm of v is preserved so that we have

lw@ll; = lhuoll, (0 <t < Topr) -
Then, the second equation gives

(4) sup [[0(®)llyse < +o0

0Lt < inax

for any ¢ € [1,2). Next, for

© (o) = [ (ulogu =} -+ ol
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we have
dW

(6) —+fvf+/u|V(logu—v)[2=0 (te (O,Tmz)).
dt Q Q

Here and henceforth,

lellin = 199l + el
See [13], [1], [5], and [12] for the proof of those facts.

2. Proof of Theorem 1

Gagliardo-Nirenberg’s inequality implies the following for s > 1, where
C is a positive constant determined only by €. See [16]:

f (wlogu+e!) / o« [Vl + C |lull? + 257 |0
] Q

Here, the elementary inequality

(7l <

log s

(8) ulogu+e* >0 (u>0)

is worth noting.
Chang and Yang’s inequality 3] is described as follows, where K is a
constant:

© toe(f &) s mivult+f vk (wer@)

The following inequality is a consequence of Jensen’s inequality, where
a>0and M = f,u. See[13] for the proof:

(10) a[uvg /ulogu+M10g (/e‘”) — MlogM
Q Q 0

We are ready to give the proof of Theorem 1. In fact, because W is
a Lyapunov function, it is monotone decreasing on [0, Tine,). We have
either

(11) DSti-Ig’}"m W(t) > —oo
or
(12) lim W(t) = —cc.

1T max
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Assume (12). In use of (8}, we have

W) >~ |9e! - /uv.
0

This implies the second relation of (2). From (4) and (9), we have

av 0'2 2 a“””l
< halli D13}
log (fne ) S 5 |Vv[3 + 1] +K
a’ a? a?
< —— — — .
< 47T]0M0gu+4W[?”U+4WW(t)+c(a+l)

with a constant C' > 0. Combining this with (10), we get
(13)

aM a’M a?
_ < _ _
a(l 47r)fnuv_ (1 pom )Lulogu+M{4ﬂW(t)+C(a+l)

Here, W{t) < W(0) and M = {u(t)|l, = |lup],- If we take

0 < a < min Am (4m ”
M'\M ’

then the first relation of (2) follows.
Next, in use of

(14) fulogu§W+fuv
o Q

and Young's inequality

1
afuvsfulogu—i——/e“”
t) 0 € Ja
with a > 0, we have

(15) (a— 1)]qu < %[)e“"+W(O).

Therefore, the fourth relation of (2) follows, and then the third relation
is a consequence of (9).

—

Assume (11). By (6), we have -

T‘mu..r
(16) f dt /vfgW(O)— inf W(t) < +oo.
0 Q

0<t<T s
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Multiplying logu by the first equation of (KS), we have
ifulogu = —/Vu-Vlogu+/qu-Vlogu
dt Jo 0 o

= —fu'l [Vu|2——/uAv.
0 0

Here, the second equation of (KS) gives

_/QUAU = / u(vy +v—u) < f(u — u)
e [

Therefore, in use of (7) we have

i/ulogu—i—D/ wt | Vul? < /'L't +2C |fuolf + 4s% |9
d¢ Jo Q 0

IA

with
2010 2C
elogs logs

D=1- wlog u.

Taking s > 1 as

s = s(t) = exp (2C/ulogu+ C|Q|)

gives D = 0, and consequently,
dil 1 4C' [
- < 4/‘0\c +2C ||ug [} + 4182 exp (4CI+ | |)

for
I=I(t)§fulogu.
0

The standard comparison theorem for ordinary differential equations

guarantees from (16) that

liminf I(t) < 400 = limsup/(t) < 4.

1T max 1T max
However, as [13], [1], and [5] have shown, the latter gives T = -+00, a
contradiction. We have the first relation of (2). Then (14) implies the
second relation of (2). This implies the fourth relation and hence the
third relation by (9). The proof is complete. a
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3. Proof of Theorem 2

In this theorem, 2 denotes the unit disc. From the assumption on the
initial values, v{z,t) = v(~z,t) follows for t € [0, Thnax). We show that
there exist constants C' > 0 and K satisfying

(17) log (f ) ] Vo +cf v+ K.

To this end we make use of the following lemma by Moser [10], where
S$? C R? denotes the unit sphere.

PROPOSITION 1. Let f be a C! function satisfying f(z) = f(—z) on
5?2, we have

(18) log (fsze ) < 35 / \grad f{ —i—f f+ K,

where K' is an absolute constant.

Let P € 5° be the north pole and Il the plane perpendicular to
the vector D_Ij, containing the origin O € R® Then the stereographic
projection, denoted by s, is defined from S? to Il U {co}. The function
fi = v(-,t) o s satisfies

(19)
2 2 1 1
/ |grad fi ==/|VU| , / elt =-—/e"p,, / flz—fvp.
s2 0 52 2 Ja 52 2 Jq

where S? = {z = (x1, 72, 73) € S? | 13 <0} and p.(z) = 8 /(1 + |z|?)*.
Setting 52 = §2\S?, we define

f1 35) S%
f(=) = { fl((—:c) ((:fee sm)-

Then, f(z) is a C' function on §? satisfying f(z) = f(—z). Inequality
(18) is applicable and it follows from (19) that

1 1
103(47‘-/6?,.) < 6 f|V’u| +—/vp.=+K

This implies (17).



936 Takasi Senba and Takashi Suzuki

We are ready to complete the proof of Theorem 3. In fact, inequality
(10) with @ = 1 gives

1 .
(20) 3 lell%n < W(t) + Mlog (/ e") — Mlog M.
0

We have by (17) that

1 M

with a constant C > 0. Because ||lugl|, = M < 8, this gives

sup ||| < 400
0t < Tnax

and hence Tiax = +00 by Theorem 1. The proof is complete.
4. Proof of Theorem 3

In this theorem, Q denotes a simply connected domain. For the proof,
it suffices to show the following.

PROPOSITION 2. We have
1 s 1 9
21 log(f e”)g—/ Vv +—f U-l—iog(f e”/)+K,
( ) 0 167 Jo | l 2J a0 a0
where K is an absolute constant.
In fact, then the right-hand side of (20} is dominated from above by

1
M LHVUH%-}——][ v+ log f 2V L+ W(0)— MlogM + MK.
16w 2 50 a0

In use of (4) we have
1 M 3
- . < 1 l'/2
(3o ) Wit < cvios ()
with a constant C > 0. Then, (3) follows from M < 8% and Theorem 1.

For the proof of Proposition 2, we require three lemmas. The first
one is due to Moser [9].
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LEMMA 1. Ifw € H}(£2), we have
[ 1 2
wl &
(22) log( Qe ) < lﬁvr_/ﬂlvwl + K.

We also make use of Lebedev-Milin’s inequality in the following form.
It is invariant under the conformal transformation and related topics are
discussed in Chang [2].

LEMMA 2. If p € C(R) is harmonic in £, it holds that
1 2
log(f e")gﬂfv -I-f )
i el ALty B

Finally, the following fact is due to Nehari [15].

LemmMA 3. I p is harmonic in 2 and w CC {2 is a subdomain with
smooth boundary, we have

(23) 4w/wef’g (/aw eﬂ/z)g.

If p is constant, (23} is nothing but the standard isoperimetic inequal-
ity. It allows us to perform a rearrangement process.

Let p € C(Q) be harmonic in  and put

)

Given a measurable function w in Q and t € R, we set 4, = {w > t}.
Then A; C R? denotes the open disc with the center at the origin

satisfying
a(t)z[ e"=f e’
A A

We define the symmetric decreasing rearrangement of w relative to p by

w'(z)=sup {tER|x € A]}.
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If ©* denotes the open ball with the center at the origin satisfying |{¥*| =
£2], then w*(z) is regarded as a function defined in *. We have

00
(24) /gowvep:/gow*-eptzv/ g(E)d(—a(t))
1 a -0
for any continuous function ¢ on R. Similarly to the Schwarz sym-
metrization, if w is Lipshitz continucus then w* is so.
We show the following lemma.
LEMMA 4. Ifw € CY(Q) is C? in {w > 0} and satisfies
w>0 in Q and w=0 on 0%,

then the inequality

(25) / V> | |[Vuw'f
8] o
holds.
Proof. For the moment, we specify the n-dimensional Hausdorfl mea-

sure dH™ to avoid confusions. Then, co-area formula in the differential
form gives

da / ef
——(t) = dH! ae t>0.
dt( ) {w=t} 1V

See [4] e.g., for this formula. From the assumption follows that & {w > t}
C {w =t} for t € (0,m), but Sard’s lemma assures furthermore that

{w >t} = {w =t} (ae t & (0,m)),

where m = maxgw. Moreover, Lemma 3 implies for a.e. ¢t € (0, m) that

2 o -1
(26) f |Vw|dH! > ( f e”/del) ( / c dHl)
{w=t} {w=t} {w=t} |Vw|

_ odH? — _47ra(t)-
@'(t) Jwse) a'(t)

Then, co-area formula in the integral form gives

(27) /Q{lengomdt/{w_t} [Vw|dEH? > —4ﬁ/0m ;(—(?)dt.
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On the other hand, the radially symmetric function w* in * also
satisfies

g{w' >t} ={w =t} (ae. t € (0,m))

because H? ({w =1t}) = 0 for a.e. t again by Sard’s lemma. For a.e.
t € (0,mm), the equalities hold at each step of (26} with p replaced by p*.
This implies

(28) [ V'l = f gt f V') dH" = —4n f o) .
Q 0 {w=t) a/(t)
Inequality (25) is a consequence of {27) and (28).

We are ready to complete the proof of Proposition 2. Let p € CHO)N
C(£2) be the solution to

Ap=0 in Q and p=v on 0N

and vy = v — p. It follows that

log ({ e”) <log (f e"""e") = log (j( e““"te”‘)
0 0 9
= p'+log (f e'”"") :
Ql

by (24). In use of Lemmas 1 and 4, the right-hand side is dominated
from above by

g +—-] Vil P+K < +u/|vrvon %

= p +—f|VUg| + K.
Here,

Ap=0 in © and =0 on 40

/ Vo -Vp=10

124

f Vuol? = / Vol - ] IVol?
41 193 O

and hence

follows. We have
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so that

log(][ )—16f'v”' {log(f ) 16«/‘ ”'}

Now, Lemma 3 gives

< log (f e“’"z) + (p/2) + log |89|
a0 a0 4 €]

. a9
=lo f e’”p)—i—][ v/2) + lo |
g( a0 an(/) g47T|Q|

by Lemma 2. The proof is complete. |
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