• 제목/요약/키워드: nano-CMOS

Search Result 113, Processing Time 0.028 seconds

Hardware implementation of a CMOS image sensor pixel using complemental signal path (상보형 신호경로 방식의 CMOS 이미지 센서 픽셀의 하드웨어 구현)

  • Jung, Jin-Woo;Kwon, Bo-Min;Kim, Ji-Man;Park, Ju-Hong;Park, Yong-Su;Lee, Je-Won;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.475-484
    • /
    • 2009
  • In this paper, an analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure consists of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Proposed CMOS image sensors pixel has been fabricated using 0.5 standard CMOS process. Measured results show that the output signal range is from 0.8 V to 3.8 V. This output signal range increased 125 % compared to conventional 3TR pixel in the condition of 5 V power supply.

Characteristics of CMOS ISFET pH sensor as packaging type (Packaging 형태에 따른 CMOS ISFET pH 센서의 특성평가)

  • Shin, Kyu-Sik;Roh, Ji-Hyoung;Cho, Nam-Kyu;Lee, Dae-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.517-518
    • /
    • 2008
  • Highly integrated ISFETs require the monolithic implementation of ISFETs, CMOS electronics, and additional sensors on the same chip This paper presents novel packaging type of CMOS ISFET pH sensor using standard CMOS FET chip and extended sensing membrane which is separated from CMOS FET. This proposed packaging type will make it easy to fabricate CMOS ISFET pH sensors

  • PDF

Modeling and HSPICE analysis of the CMOS image sensor pixel with the complementary signal path (상보형 신호경로 방식의 CMOS 이미지센서 픽셀 모델링 및 HSPICE 해석)

  • Kim, Jin-Su;Jung, Jin-Woo;Kang, Myung-Hun;Noh, Ho-Sub;Kim, Jong-Min;Lee, Jae-Woon;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2008
  • In this paper, a circuit analysis of the complementary CMOS active pixel and readout circuit is carried out. Complementary pixel structure which is different from conventional 3TR APS structure is consist of photo diode, reset PMOS, several NMOSs and PMOSs sets for complementary signals. Photo diode is modelled with Medici device program. HSPICE was used to analyze the variation of the signal feature depending on light intensity using $0.5{\mu}M$ standard CMOS process. Simulation results show that the output signal range is from 0.8 V to 4.5 V. This signal range increased 135 % output dynamic range compared to conventional 3TR pixel in the condition of 5 V power supply.

Photo Diode and Pixel Modeling for CMOS Image Sensor SPICE Circuit Analysis (CMOS 이미지센서 SPICE 회로 해석을 위한 포토다이오드 및 픽셀 모델링)

  • Kim, Ji-Man;Jung, Jin-Woo;Kwon, Bo-Min;Park, Ju-Hong;Park, Yong-Su;Lee, Je-Won;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • In this paper, we are indicated CMOS Image sensor circuit SPICE analysis for the Photo Diode and pixel Modeling. We get a characteristic of the photoelectric current using a device simulator Medici and develop the Photodiode model for applying a SPICE simulation. For verifying the result, We compared the result of SPICE simulation with the result of mixed mode simulation about the testing circuit structure consisted photodiode and NMOS.

Design of the low noise CMOS LDO regulator for a low power capacitivesensor interface (저전력 용량성 센서 인터페이스를 위한 저잡음 CMOS LDO 레귤레이터 설계)

  • Kwon, Bo-Min;Jung, Jin-Woo;Kim, Ji-Man;Park, Yong-Su;Song, Han-Jung
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This paper presents a low noise CMOS regulator for a low power capacitive sensor interface in a $0.5{\mu}m$ CMOS standard technology. Proposed LDO regulator circuit consist of a voltage reference block, an error amplifier and a new buffer between error amplifier and pass transistor for a good output stability. Conventional source follower buffer structure is simple, but has a narrow output swing and a low S/N ratio. In this paper, we use a 2-stage wide band OTA instead of source follower structure for a buffer. From SPICE simulation results, we got 0.8 % line regulation and 0.18 % load regulation.

Enhancement of Light Guiding Efficiency in CMOS Image Sensor by Introducing an Optical Thin Film (광학 박막을 채용한 CMOS 이미지 센서 픽셀의 수광 효율)

  • Kang, Myung-Hoon;Ko, Eun-Mi;Lee, Je-Won;Cho, Guan-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.57-60
    • /
    • 2009
  • We consider introducing an optical thin film to the light guiding wall of a pixel in order to enhance the light guiding efficiency of a CMOS image sensor. Simulating the reflectance as a function of the incidence angle using the Essential Macleod program, we find that the range of total internal reflection is greatly increased for several materials. Particularly when air is chosen as the thin film material, the critical angle of total internal reflection could be shifted to about 50 degrees.

Novel Ni-Silicide Structure Utilizing Cobalt Interlayer and TiN Capping Layer and its Application to Nano-CMOS (Cobalt Interlayer 와 TiN capping를 갖는 새로운 구조의 Ni-Silicide 및 Nano CMOS에의 응용)

  • 오순영;윤장근;박영호;황빈봉;지희환;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, a novel Ni silicide technology with Cobalt interlayer and Titanium Nitride(TiN) capping layer for sub 100 nm CMOS technologies is presented, and the device parameters are characterized. The thermal stability of hi silicide is improved a lot by applying co-interlayer at Ni/Si interface. TiN capping layer is also applied to prevent the abnormal oxidation of NiSi and to provide a smooth silicidc interface. The proposed NiSi structure showed almost same electrical properties such as little variation of sheet resistance, leakage current and drive current even after the post silicidation furnace annealing at $700^{\circ}C$ for 30 min. Therefore, it is confirmed that high thermal robust Ni silicide for the nano CMOS device is achieved by newly proposed Co/Ni/TiN structure.

Folded-Cascode Operational Amplifier for $32{\times}32$ IRFPA Readout Integrated Circuit using the $0.35{\mu}m$ CMOS process ($0.35{\mu}m$ CMOS 공정을 이용한 $32{\times}32$ IRFPA ROIC용 Folded-Cascode Op-Amp 설계)

  • Kim, So-Hee;Lee, Hyo-Yeon;Jung, Jin-Woo;Kim, Jin-Su;Kang, Myung-Hoon;Park, Yong-Soo;Song, Han-Jung;Jeon, Min-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.341-342
    • /
    • 2007
  • The IRFPA (InfraRed Focal Plane Array) ROIC (ReadOut Integrated Circuit) was designed in folded-cascode Op-Amp using $0.35{\mu}m$ CMOS technology. As the folded-cascode has high open-loop voltage gain and fast settling time, that used in many analog circuit designs. In this paper, folded-cascode Op-Amp for ROIC of the $32{\times}32$ IRFPA has been designed. HSPICE simulation results are unit gain bandwidth of 13.0MHz, 90.6 dB open loop gain, 8 V/${\mu}m$ slew rate, 600 ns settling time and $66^{\circ}$ phase margin.

  • PDF

Design of a Silicon Neuron Circuit using a 0.18 ㎛ CMOS Process (0.18 ㎛ CMOS 공정을 이용한 실리콘 뉴런 회로 설계)

  • Han, Ye-Ji;Ji, Sung-Hyun;Yang, Hee-Sung;Lee, Soo-Hyun;Song, Han-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.457-461
    • /
    • 2014
  • Using $0.18{\mu}m$ CMOS process silicon neuron circuit of the pulse type for modeling biological neurons, were designed in the semiconductor integrated circuit. Neuron circuiSt providing is formed by MOS switch for initializing the input terminal of the capacitor to the input current signal, a pulse signal and an amplifier stage for generating an output voltage signal. Synapse circuit that can convert the current signal output of the input voltage signal, using a bump circuit consisting of NMOS transistors and PMOS few. Configure a chain of neurons for verification of the neuron model that provides synaptic neurons and two are connected in series, were performed SPICE simulation. Result of simulation, it was confirmed the normal operation of the synaptic transmission characteristics of the signal generation of nerve cells.

Design of SOI CMOS image sensors using a nano-wire MOSFET-structure photodetector (나노 와이어 MOSFET 구조의 광검출기를 가지는 SOI CMOS 이미지 센서의 픽셀 설계)

  • Do, Mi-Young;Shin, Young-Shik;Lee, Sung-Ho;Park, Jae-Hyoun;Seo, Sang-Ho;Shin, Jang-Kyoo;Kim, Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.387-394
    • /
    • 2005
  • In order to design SOI CMOS image sensors, SOI MOSFET model parameters were extracted using the equation of bulk MOSFET model parameters and were optimized using SPICE level 2. Simulated I-V characteristics of the SOI NMOSFET using the extracted model parameters were compared to the experimental I-V characteristics of the fabricated SOI NMOSFET. The simulation results agreed well with experimental results. A unit pixel for SOI CMOS image sensors was designed and was simulated for the PPS, APS, and logarithmic circuit using the extracted model parameters. In these CMOS image sensors, a nano-wire MOSFET photodetector was used. The output voltage levels of the PPS and APS are well-defined as the photocurrent varied. It is confirmed that SOI CMOS image sensors are faster than bulk CMOS image sensors.