• Title/Summary/Keyword: mathematical error

Search Result 945, Processing Time 0.022 seconds

CURVED DOMAIN APPROXIMATION IN DIRICHLET'S PROBLEM

  • Lee, Mi-Young;Choo, Sang-Mok;Chung, Sang-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1075-1083
    • /
    • 2003
  • The purpose of this paper is to investigate the piecewise wise polynomial approximation for the curved boundary. We analyze the error of an approximated solution due to this approximation and then compare the approximation errors for the cases of polygonal and piecewise polynomial approximations for the curved boundary. Based on the results of analysis, p-version numerical methods for solving Dirichlet's problems are applied to any smooth curved domain.

AN UPSTREAM PSEUDOSTRESS-VELOCITY MIXED FORMULATION FOR THE OSEEN EQUATIONS

  • Park, Eun-Jae;Seo, Boyoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.267-285
    • /
    • 2014
  • An upstream scheme based on the pseudostress-velocity mixed formulation is studied to solve convection-dominated Oseen equations. Lagrange multipliers are introduced to treat the trace-free constraint and the lowest order Raviart-Thomas finite element space on rectangular mesh is used. Error analysis for several quantities of interest is given. Particularly, first-order convergence in $L^2$ norm for the velocity is proved. Finally, numerical experiments for various cases are presented to show the efficiency of this method.

FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS

  • Choi, Youngmi;Kim, Soohyun;Lee, Hyung-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.847-862
    • /
    • 2014
  • Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. Error estimates are established for the fully coupled optimality system using Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.

A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS

  • Cho, Sungmin;Park, Eun-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1655-1668
    • /
    • 2014
  • In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.

ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS

  • Liang, Han-Ying;Qi, Yan-Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.247-257
    • /
    • 2007
  • Consider the heteroscedastic regression model $Y_i=g(x_i)+{\sigma}_i\;{\epsilon}_i=(1{\leq}i{\leq}n)$, where ${\sigma}^2_i=f(u_i)$, the design points $(x_i,\;u_i)$ are known and nonrandom, and g and f are unknown functions defined on closed interval [0, 1]. Under the random errors $\epsilon_i$ form a sequence of NA random variables, we study the asymptotic normality of wavelet estimators of g when f is a known or unknown function.

ALGEBRAIC POINTS ON THE PROJECTIVE LINE

  • Ih, Su-Ion
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1635-1646
    • /
    • 2008
  • Schanuel's formula describes the distribution of rational points on projective space. In this paper we will extend it to algebraic points of bounded degree in the case of ${\mathbb{P}}^1$. The estimate formula will also give an explicit error term which is quite small relative to the leading term. It will also lead to a quasi-asymptotic formula for the number of points of bounded degree on ${\mathbb{P}}^1$ according as the height bound goes to $\infty$.

DIRECTED STRONGLY REGULAR GRAPHS AND THEIR CODES

  • Alahmadi, Adel;Alkenani, Ahmad;Kim, Jon-Lark;Shi, Minjia;Sole, Patrick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • The rank over a finite field of the adjacency matrix of a directed strongly regular graph is studied, with some applications to the construction of linear codes. Three techniques are used: code orthogonality, adjacency matrix determinant, and adjacency matrix spectrum.

ERROR ESTIMATION FOR NONLINEAR ELLIPTIC PROBLEMS USING THE h-p-MIXED FINITE ELEMENT METHOD IN 3 DIMENSIONAL SPACE

  • Lee, Mi-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.237-260
    • /
    • 2001
  • The approximation properties for $L^2$-projection, Raviart-Thomas projection, and inverse inequality have been derived in 3 dimensional space. h-p-mixed finite element methods for strongly nonlinear second order elliptic problems are proposed and analyzed in 3D. Solvability and convergence of the linearized problem have been shown through duality argument and fixed point argument. The analysis is carried out in detail using Raviart-Thomas-Nedelec spaces as an example.

  • PDF

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF BOUNDARY OPTIMAL CONTROL PROBLEMS FOR THE NAVIER-STOKES FLOWS THROUGH A CHANNEL WITH STEPS

  • Lee, Hyung-Chun;Lee, Yong-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.173-192
    • /
    • 1999
  • We study a boundary optimal control problem of the fluid flow governed by the Navier-Stokes equations. the control problem is formulated with the flow through a channel with steps. The first-order optimality condition of the optimal control is derived. Finite element approximations of the solutions of the optimality system are defined and optimal error estimates are derived. finally, we present some numerical results.

  • PDF