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FINITE ELEMENT APPROXIMATIONS OF

THE OPTIMAL CONTROL PROBLEMS FOR

STOCHASTIC STOKES EQUATIONS

Youngmi Choi, Soohyun Kim, and Hyung-Chun Lee

Abstract. Finite element approximation solutions of the optimal con-
trol problems for stochastic Stokes equations with the forcing term per-

turbed by white noise are considered. Error estimates are established for

the fully coupled optimality system using Brezzi-Rappaz-Raviart theory.
Numerical examples are also presented to examine our theoretical results.

1. Introduction

The optimal control problems for partial differential equations have been
studied widely (see [1, 11, 12, 15, 16, 18, 20, 21, 22, 23]). Recently there has
been an increased interest in mathematical analyses and computations of sto-
chastic partial differential equations (see [3, 4, 5, 13, 19, 25, 26, 27]). In the ar-
ticle [7], numerical solutions of the stochastic Stokes equations driven by white
noise perturbed forcing terms using finite element methods was considered. We
use their results to analyze our optimal control problems for stochastic Stokes
equations.

The optimal control problem we consider here is to minimize the functional

(1) J (u, p, f) = E
(

1

2

∫
|u−Ud|2 dx+

δ

2

∫
|f |2 dx

)
subject to the steady-state Stokes equations with the forcing term perturbed
by white noise:

−ν∆u +∇p = f + σẆ in Ω,

∇ · u = 0 in Ω(2)

u = 0 on ∂Ω
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where Ud is a given desired function. Here, Ω is a convex polygon in R2 or a
convex polyhedron in R3, u is a velocity of the fluid flow, p is the pressure, f is
a prescribed forcing term, ν is the viscous constant, σ is a positive continuous
function in Ω and Ẇ = (Ẇ 1, . . . , Ẇ d) is the white noise such that

E(Ẇ j(x)Ẇ j(x′)) = δ(x− x′), x, x′ ∈ Ω, j = 1, . . . , d,

where δ denotes the usual Dirac delta function and E the expectation. We
assume that Ẇ i and Ẇ j , i 6= j, i, j = 1, . . . , d, are independent. We also
assume that p satisfies the zero mean constraint,

∫
Ω
p dx = 0. The objective

of this optimal control problem is to seek a state variables u and p, and the
control f which minimize the expectation of L2-norm distances between u and
Ud and satisfy (2). The second term in (1) is added as a limiting the cost of
control and the positive penalty parameter δ can be used to change the relative
importance of the two terms appearing in the definition of the functional.

The plan of the paper is as follows. In the next section, we define an ap-
proximate solution of the optimal control problems for the stochastic Stokes
equations by discretizing the white noise and show there is an optimal solution
for the optimization problem. Then we derive the optimality system of equa-
tions by the Gâteaux differentiability. In Section 3, we construct finite element
approximations for the stochastic Stokes equations and carry out the error
analysis using Brezzi-Rappaz-Raviart theory. Finally, in Section 4, we present
numerical simulation results using the algorithm constructed in Section 3.

1.1. Notations

We use standard Sobolev space notation (see [2]). The standard Sobolev
spaces Hm(Ω) and H1

0 (Ω) will be used with the associated standard inner
products (·, ·)m and their respective norms ‖ · ‖m where

H1
0 (Ω) =

{
f ∈ H1(Ω) | f = 0 on ∂Ω

}
.

In particular, for m = 0 we replace Hm(Ω) and H1
0 (Ω) by L2(Ω) and L2

0(Ω)
with the norm ‖ · ‖ and inner product (·, ·) where

L2
0(Ω) =

{
f ∈ L2(Ω) |

∫
Ω

f(x) dΩ = 0

}
.

For positive values of m the space H−m(Ω) is defined as the dual space of

Hm
0 (Ω) equipped with the norm ‖φ‖−m = sup06=v∈Hm

0 (Ω)
〈φ,v〉
‖v‖m where 〈·, ·〉 is

the duality pairing between H−m(Ω) and Hm
0 (Ω). For vector valued functions,

we define the Sobolev space Hm(Ω) = [Hm(Ω)]k, k = 2 or 3.

1.2. Approximation with discretized white noise

In this subsection we define an approximate solution of (2) by discretizing

the white noise Ẇ . First we introduce a discretization for the white noise. Let
{Th} be a family of triangulations of Ω, where h ∈ (0, 1) is the meshsize. We



FINITE ELEMENT APPROXIMATIONS 849

assume that the family is quasiuniform, i.e., there exist positive constants ρ1

and ρ2 such that

ρ1h ≤ Rinr
T < Rcir

T ≤ ρ2h, ∀T ∈ Th, ∀0 < h < 1,

where Rinr
T and Rcir

T are the inradius and the circumradius of T . Write

ξjT =
1√
|T |

∫
T

1 dW j(x), j = 1, . . . , d

for each triangle T ∈ Th, where |T | denotes the area of T . Then the piecewise

constant approximation to Ẇ j(x) is given by

Ẇ j
h(x) =

∑
T∈Th

|T |−
1
2 ξjTχT (x),

where χT is the characteristic function of T . It is apparent that Ẇh=(Ẇ 1
h , . . . ,

Ẇ d
h ) ∈ (L2(Ω))d almost surely. However, we have the following estimate, in

[8], which shows that ‖Ẇh‖ is unbounded as h→ 0.

Lemma 1.1. Let ‖Ẇh‖ =
√
‖Ẇ 1

h‖2 + · · ·+ ‖Ẇ d
h‖2. Then there exist positive

constant C1 and C2 independent of h such that

C1h
−k ≤ E(‖Ẇh‖2) ≤ C2h

−k,

where k = 2 or 3 for d = 2 or 3, respectively.

Now we consider the approximation problem for (2) with the discretized

white noise forcing term Ẇh:

−ν∆uh +∇ph = fh + σẆh in Ω,

∇ · uh = 0 in Ω,(3)

uh = 0 on ∂Ω.

We have the following estimate concerning the bounds for uh and ph.

Lemma 1.2. There exists a positive constant C independent of h such that

E(‖uh‖22 + ‖ph‖21) ≤ C(‖fh‖2 + h−k),

where k = 2 or 3 for d = 2 or 3, respectively.

Proof. From the standard estimates of Stokes equations (see e.g., [14]) and
Lemma 1.1, we have that

E(‖uh‖22 + ‖ph‖21) ≤ CE(‖fh‖2 + ‖Ẇh‖2) ≤ C(‖fh‖2 + h−k),

where k = 2 or 3 for d = 2 or 3, respectively. �

For the errors u−uh and p− ph, we have the following estimate which is in
[7].
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Theorem 1.3. Let (u, p) and (uh, ph) be the solution of (2) and (3), respec-
tively. Then there exists a constant C such that

E(‖u− uh‖2 + ‖p− ph‖2−1) ≤ C| lnh|h2

for d = 2 and

E(‖u− uh‖2 + ‖p− ph‖2−1) ≤ Ch
for d = 3.

2. The optimal control problem

2.1. The optimization problem

Let uh ∈ H1
0(Ω) and ph ∈ L2

0(Ω) denote the state variables, and let fh ∈
H−1(Ω) denote the distributed control. The state and control variables are
also constrained to satisfy the system (3), which recast into the weak form:

νa(uh,v) + b(v, ph) = 〈fh,v〉+ (σẆh,v) ∀v ∈ H1
0(Ω),(4)

b(uh, q) = 0 ∀q ∈ L2
0(Ω),(5)

where

a(u,v) =

∫
Ω

∇u : ∇v dΩ ∀u,v ∈ H1(Ω) ,

b(v, q) = −
∫

Ω

∇ · v q dΩ ∀v ∈ H1(Ω),∀q ∈ L2(Ω).

With J (uh, ph, fh) given by (1), the admissibility set Uad is defined by

Uad = {(uh, ph, fh) ∈ H1
0(Ω)× L2

0(Ω)×H−1(Ω) :

J (uh, ph, fh) <∞ and (uh, ph, fh) satisfies (4) and (5)}.

Then (ûh, p̂h, f̂h) ∈ Uad is called an optimal solution if there exists ε > 0 such
that

J (ûh, p̂h, f̂h) ≤ J (uh, ph, fh) ∀(uh, ph, fh) ∈ Uad
satisfying

‖ûh − uh‖1 + ‖p̂h − ph‖+ ‖f̂h − fh‖−1 < ε.

The optimal control problem can now be formulated as a constrained mini-
mization problem in a Hilbert space

(6) min
(uh,ph,fh)∈Uad

J (uh, ph, fh).

The existence and uniqueness of an optimal solution of (6) is easily proven
using standard arguments in the following theorem (see [20]).

Theorem 2.1. There is an optimal solution (ûh, p̂h, f̂h) ∈ Uad of J (uh, ph, fh).
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Proof. We first note that Uad is clearly not empty. Let
{

(u
(n)
h , p

(n)
h , f

(n)
h )

}
be

a minimizing sequence in Uad, that is,

lim
n→∞

J (u
(n)
h , p

(n)
h , f

(n)
h ) = inf

(uh,ph,fh)∈Uad

J (uh, ph, fh).

Because a convergent sequence is bounded, we have that ‖f (n)
h ‖−1 ≤ C for some

C > 0. That is, the sequence {f (n)
h } is uniformly bounded in H−1(Ω). Thus

there is a subsequence {f (ni)
h } of {f (n)

h } and f̂h ∈ H−1(Ω) such that for any
vh ∈ H1

0(Ω),

〈f (ni)
h ,vh〉 → 〈f̂h,vh〉.

Also, using the bound ‖uh‖1 +‖ph‖ ≤ C(‖fh‖−1 +‖Ẇh‖), we have that the se-

quence {‖u(n)
h ‖1} and {‖p(n)

h ‖} is uniformly bounded. So, we may then extract
subsequences such that

p
(ni)
h ⇀ p̂h in L2

0(Ω),

u
(ni)
h ⇀ ûh in H1

0(Ω),

u
(ni)
h → ûh in L2

0(Ω),

for some (ûh, p̂h, f̂h) ∈ H1
0(Ω)×L2

0(Ω)×H−1(Ω). The last convergence results
above follows from the compact imbedding H1

0(Ω) ↪→↪→ L2
0(Ω). We may then

easily pass to the limit in (4)–(5). Now, by the weak lower semi-continuity of

J (·, ·, ·), we conclude that (ûh, p̂h, f̂h) is an optimal solution, i.e.,

inf
(uh,ph,fh)∈Uad

J (uh, ph, fh) = lim
i→∞

inf J (u(ni), p(ni), f (ni)) = J (ûh, p̂h, f̂h).

Thus, we have shown that an optimal solution belonging to Uad exists. Fi-
nally, the uniqueness of the optimal solution follows from the convexity of the
functional and the linearity of the constraint equations. �

2.2. The optimality system

Assume that f̂h ∈ L2
0(Ω) is a minimizer of J and ûh and p̂h are the corre-

sponding state variables. Define the adjoint variables v̂h and q̂h such that

νa(v̂h, z) + b(z, q̂h) = (ûh −Ud, z) ∀z ∈ H1
0(Ω),(7)

b(v̂h, s) = 0 ∀s ∈ L2
0(Ω).

Theorem 2.2. J has a unique minimizer f̂h ∈ L2
0(Ω) and it is determined by

(8) δ

∫
Ω

f̂h gdx = −
∫

Ω

v̂h gdx ∀g ∈ L2
0(Ω).

Proof. The existence and uniqueness follow from the standard theory of optimal
controls (see [24]).
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For fh ∈ L2
0(Ω), let (uh(fh), ph(fh)) be the solution of (4)-(5). Then ∀g ∈

L2(Ω),

∂

∂ε
uh(f̂h + εg)|ε=0 = uh(g).

Since f̂h is a minimizer of J ,

dJ (ûh(f̂h), p̂h(f̂h), f̂h)

dfh
=

d

dε
J (ûh(f̂h + εg), p̂h(f̂h + εg), f̂h + εg)|ε=0 = 0,

which implies that ∫
Ω

(ûh −Ud)ûh(g)dx+ δ

∫
Ω

f̂h gdx = 0.

By (7) and integration by parts, we have that∫
Ω

(ûh −Ud)ûh(g)dx = ν

∫
Ω

∇v̂h∇ûh(g)dx+

∫
Ω

∇ · ûh(g)q̂hdx

= −
∫

Ω

v̂h∇ · (ν∇ûh (g))dx

=

∫
Ω

v̂h gdx,

almost surely. Since g ∈ L2
0(Ω) is arbitrary, we obtain (8). �

From the above theorem, we conclude that solving the minimization prob-
lems (6) is equivalent to solving the following optimality system of equations.

νa(uh,w) + b(w, ph) = 〈fh,w〉+ (σẆh,w) ∀w ∈ H1
0(Ω),

b(uh, r) = 0 ∀r ∈ L2
0(Ω),

νa(vh, z) + b(z, qh) = (uh −Ud, z) ∀z ∈ H1
0(Ω),

b(vh, s) = 0 ∀s ∈ L2
0(Ω),

δ(fh,g) + (vh,g) = 0 ∀g ∈ L2
0(Ω).

Using the optimality condition fh = −vh

δ , we obtain the following optimality

system: find (uh, ph,vh, qh) ∈ H1
0(Ω)× L2

0(Ω)×H1
0(Ω)× L2

0(Ω) such that

νa(uh,w) + b(w, ph) = (−vh
δ
,w) + (σẆh,w) ∀w ∈ H1

0(Ω),

b(uh, r) = 0 ∀r ∈ L2
0(Ω),

νa(vh, z) + b(z, qh) = (uh −Ud, z) ∀z ∈ H1
0(Ω),

b(vh, s) = 0 ∀s ∈ L2
0(Ω).

(9)
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3. Finite element approximations

3.1. Finite element discretizations

We consider the numerical approximations of (9) using the finite element
method. First we choose a family of finite dimensional subspaces Vh ⊂ H1(Ω)
and Qh ⊂ L2(Ω). We let V0

h = Vh ∩ H1
0(Ω) and Q0

h = Qh ∩ L2
0(Ω). These

families are parameterized by a parameter h that tends to zero; commonly, h is
chosen to be some measure of the grid size. First, we have the approximation
properties: there exist a constant C, independent of h, vh, and qh, such that

inf
v̂h∈Vh

‖v − v̂h‖s ≤ Ch2−s‖v‖2 s = 0, 1, ∀v ∈ H2(Ω),

inf
q̂h∈Qh

‖q − q̂h‖ ≤ Ch‖q‖1 ∀q ∈ H1(Ω).

Next, we assume the inf-sup condition: there exists a constant C, independent
of h, such that

inf
06=q̂h∈Qh

sup
06=v̂h∈Vh

b(v̂h, q̂h)

‖v̂h‖1‖q̂h‖0
≥ C.

The finite element approximation for (9) is to find ûh, p̂h, v̂h and q̂h such
that 

νa(ûh,wh) + b(wh, p̂h) = (− v̂h
δ
,wh) + (σẆh,wh) ∀wh ∈ V0

h,

b(ûh, rh) = 0 ∀rh ∈ Q0
h,

νa(v̂h, zh) + b(zh, q̂h) = (ûh −Ud, zh) ∀zh ∈ V0
h,

b(v̂h, sh) = 0 ∀sh ∈ Q0
h.

(10)

3.2. Discretization error estimates

The B-R-R theory in [6] implies that the error of approximation of solutions
of certain nonlinear problems under certain hypotheses is basically the same
as the error of approximation of solutions of related linear problems (see [6],
[14], [19]). We first fit our optimality system and its discrete approximation
into the B-R-R framework. Then we obtain the desired error estimates on the
solution of the optimality system of equations by verifying each assumption of
the B-R-R theory. For this purpose, we show how to cast nonlinear problems
(9) and (10) in the respective canonical forms

(11) F (λ, ψh) ≡ ψh + TG(λ, ψh) = 0,

and

(12) Fh(λ, ψ̂h) ≡ ψ̂h + ThG(λ, ψ̂h) = 0.

Let λ = 1
ν . We set X = H1

0(Ω)× L2
0(Ω)×H1

0(Ω)× L2
0(Ω) and Y = H−1(Ω)×

L2(Ω) × H−1(Ω). We define the linear operator T ∈ L(Y ;X) as follows:



854 Y. CHOI, S. KIM, AND H.-C. LEE

T (η, ξ, τ) = (uh, ph,vh, qh) for (η, ξ, τ) ∈ Y and (uh, ph,vh, qh) ∈ X, if and
only if

a(uh,w) + b(w, ph) = 〈η,w〉+ (ξ,w) ∀w ∈ H1
0(Ω),

b(uh, r) = 0 ∀r ∈ L2
0(Ω),

a(vh, z) + b(z, qh) = 〈τ, z〉 ∀z ∈ H1
0(Ω),

b(vh, s) = 0 ∀s ∈ L2
0(Ω).

We set Xh = V0
h × Q0

h × V0
h × Q0

h. We define the discrete operator Th ∈
L(Y ;Xh) as follows:

Th(η, ξ, τ) = (ûh, p̂h, v̂h, q̂h) for (η, ξ, τ) ∈ Y and (ûh, p̂h, v̂h, q̂h) ∈ Xh

if and only if

a(ûh,wh) + b(wh, p̂h) = 〈η,wh〉+ (ξ,wh) ∀wh ∈ V0
h,

b(ûh, rh) = 0 ∀rh ∈ Q0
h,

a(zh, v̂h) + b(zh, q̂h) = 〈τ, zh〉 ∀zh ∈ V0
h,

b(v̂h, sh) = 0 ∀sh ∈ Q0
h.

Let Λ denote a compact subset of R+. Next, we define G : Λ ×X → Y as
follows:

G(λ, (uh, ph,vh, qh)) = λ(δ−1vh,−σẆh,Ud − uh).

It is easily seen that the reduced optimality system (9) is equivalent to

(uh, λph,vh, λqh) + TG(λ, (uh, λph,vh, λqh)) = 0,

and that the discrete optimality system (10) is equivalent to

(ûh, λp̂h, v̂h, λq̂h) + ThG(λ, (ûh, λp̂h, v̂h, λq̂h)) = 0.

We define a space Z = L2(Ω) × L2(Ω) × L2(Ω). Then clearly this space is
continuously embedded into Y = H−1(Ω)× L2(Ω)×H−1(Ω).

Denote the Fréchet derivative of G(λ, (u, p,v, q)) with respect to (u, p,v, q)
by DG(λ, (u, p,v, q)) or G(u,p,v,q)(λ, (u, p,v, q)). Then for (uh, ph,vh, qh) ∈ X,
we obtain

DG(λ, (uh, ph,vh, qh)) · (ũh, p̃h, ṽh, q̃h)

= λ(δ−1ṽh, 0,−ũh) ∀(ũh, p̃h, ṽh, q̃h) ∈ X.

Proposition 3.1. DG(λ, (uh, ph,vh, qh)) ∈ L(X;Z) for all (uh, ph,vh, qh) ∈
X.

Proof. It is clear that

‖DG(λ, (uh, ph,vh, qh)) · (ũh, p̃h, ṽh, q̃h)‖2Z = δ−1‖ṽh‖2 + ‖ũh‖2

≤ C
(
‖ũh‖21 + ‖ṽh‖21

)
Therefore, DG(λ, (uh, ph,vh, qh)) ∈ L(X;Z) for all (uh, ph,vh, qh) ∈ X.

�
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Proposition 3.2. G is twice continuously differentiable and D2G is bounded
on all bounded sets of X.

Proof. For any (uh, ph,vh, qh) ∈ X,

D2G(λ, (uh, ph,vh, qh)) · (ũh, p̃h, ṽh, q̃h) = (0, 0, 0) ∀(ũh, p̃h, ṽh, q̃h) ∈ X.

Thus, it is easy to show that D2G is well defined, continuous, and bounded
on all bounded sets of X. �

Proposition 3.3. For any (η, ξ, τ) ∈ Y , ‖(T − Th)(η, ξ, τ)‖X → 0 as h→ 0.

Proof.

‖(T − Th)(η, ξ, τ)‖2X = ‖(uh − ûh, ph − p̂h,vh − v̂h, qh − q̂h)‖2X
= ‖uh − ûh‖21 + ‖ph − p̂h‖2 + ‖vh − v̂h‖21 + ‖qh − q̂h‖2

≤ Ch2(‖η‖2 + ‖ξ‖2 + ‖τ‖2).

Hence we have ‖(T − Th)(η, ξ, τ)‖X → 0 as h→ 0. �

Proposition 3.4. ‖T − Th‖L(Z,X)→0 as h→ 0.

Proof. Note that for (η, ξ, τ) ∈ Z, we have

‖(T − Th)(η, ξ, τ)‖2X = ‖(uh − ûh, ph − p̂h,vh − v̂h, qh − q̂h)‖2X
= ‖uh − ûh‖21 + ‖ph − p̂h‖2 + ‖vh − v̂h‖21 + ‖qh − q̂h‖2

≤ Ch2(‖η‖2 + ‖ξ‖2 + ‖τ‖2)

≤ Ch2‖(η, ξ, τ)‖2Z .

Thus, we obtain

‖(T − Th)(η, ξ, τ)‖2L(Z,X) = sup
‖(η,ξ,τ)‖2Z 6=0

‖(T − Th)(η, ξ, τ)‖2X
‖(η, ξ, τ)‖2Z

≤ Ch2 → 0

as h→ 0. �

Proposition 3.5. {(λ, ψh(λ)) : λ ∈ Λ} is a branch of nonsingular (regular)
solutions of (11).

Proof.

a(ǔh, ṽh) + λb(ṽh, p̌h)− λ(− v̌h
δ
, ṽh) = (w, ṽh) ∀ṽh ∈ H1

0(Ω),

b(ǔh, q̃h) = (l, q̃h) ∀q̃h ∈ L2
0(Ω),

a(ũh, v̌h) + λb(ũh, q̌h)− λ(ǔh −Ud, ũh) = (z, ũh) ∀ũh ∈ H1
0(Ω),

b(v̌h, p̃h) = (m, p̃h) ∀p̃h ∈ L2
0(Ω)

has a unique solution (ǔh, p̌h, v̌h, q̌h) ∈ X for every w, z ∈ H−1(Ω), l, m
∈ L2(Ω). �
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Through Propositions 3.1–3.5 we have verified all of the assumptions of
Theorem 3.6. Thus, we obtain the following results.

Theorem 3.6. Let F (λ, ψh) = 0 denote abstract form (11) and assume that
{(λ, ψh(λ)) |λ ∈ Λ} is a branch of regular solutions of (11). Furthermore,
assume that T ∈ L(Y,X), that G is a C2 map Λ×X 7→ Y such that all second
derivatives of G are bounded on bounded subsets of Λ×X, and that there exists
a space Z ⊂ Y , with continuous imbedding, such that Dψh

G(λ, ψh) ∈ L(X,Z)
for all λ ∈ Λ and ψh ∈ X. If approximate problem (12) is such that

lim
h→0
‖(T − Th)g‖X = 0

for all g ∈ Y and

lim
h→0
‖(T − Th)‖L(Z,X) = 0.

Then
1. there exists a neighborhood O of the origin in X and, for h sufficiently

small, a unique C2 function λ 7→ ψ̂h(λ) ∈ Xh such that {(λ, ψ̂h(λ)) |λ ∈ Λ} is

a branch of regular solutions of discrete problem (12) and ψh(λ) − ψ̂h(λ) ∈ O
for all λ ∈ Λ;

2. for all λ ∈ Λ we have

(13) ‖ψ̂h(λ)− ψh(λ)‖X ≤ C‖(T − Th)G(λ, ψh(λ))‖X .

Therefore, from (13), we obtain the following error estimates.

‖uh − ûh‖1 + ‖ph − p̂h‖+ ‖vh − v̂h‖1 + ‖qh − q̂h‖(14)

≤ Ch (‖uh‖2 + ‖ph‖1 + ‖vh‖2 + ‖qh‖1) .

Remark 3.7. It is supposed that the solution (u, p) for the optimal control prob-
lem with the functional (1) and the equations (2) and the finite element solution
(ûh, p̂h) for the optimality system (10) satisfy the following error estimates

E(‖u− ûh‖+ ‖p− p̂h‖−1)

≤ E(‖u− uh‖+ ‖p− ph‖−1) + E(‖uh − ûh‖+ ‖ph − p̂h‖−1)

≤ C| lnh|h2 + Ch(‖uh‖1 + ‖ph‖).

4. Numerical experiments

In this section we will present numerical experiments using the finite element
method described in Sections 2 and 3. We construct the finite dimensional
subspaces Vh and Qh using the Taylor-Hood method. We will compute both
cases of the control problems of deterministic and stochastic Stokes equations
and compare the results.

We consider the optimality system with Ω = [0, 1] × [0, 1], the viscous con-
stant ν = 1 and the desired velocity Ud(x, y) = (u1(x, y), u2(x, y)) is chosen
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Table 1. The norms ‖u−Ud‖, ‖f‖ and JD(u, p, f) when h = 1/16

δ ‖u−Ud‖ ‖f‖ JD(u, p, f)

1 1.2742E-01 2.3711E-03 8.1204E-03
10−3 9.5121E-02 1.7479E+00 6.0515E-03
10−6 9.0166E-04 7.3580E+00 2.7477E-05
10−9 5.0727E-06 7.5122E+00 2.8229E-08
10−12 4.5747E-06 7.5128E+00 3.8685E-11
10−15 4.5747E-06 7.5259E+00 1.0492E-11

Table 2. The norms ‖u−Ud‖, ‖f‖ and JD(u, p, f) when h = 1/32

δ ‖u−Ud‖ ‖f‖ JD(u, p, f)

1 1.2741E-01 2.3710E-03 8.1200E-03
10−3 9.5118E-02 1.7478E+00 6.0512E-03
10−6 9.0305E-04 7.3565E+00 2.7467E-05
10−9 5.5020E-06 7.5457E+00 2.8484E-08
10−12 2.7540E-07 7.5499E+00 2.8538E-11
10−15 2.7533E-07 7.6442E+00 6.7120E-14

Table 3. The norms ‖u−Ud‖, ‖f‖ and JD(u, p, f) with con-
vergence rate for δ = 10−15

h ‖u−Ud‖ ‖f‖ JD(u, p, f)

1/4 1.1557E-03 7.2595E+00 6.6779E-07
1/8 7.6032E-05 3.93 7.4413E+00 2.8904E-09 7.85
1/16 4.5747E-06 4.05 7.5259E+00 1.0492E-11 8.11
1/32 2.7533E-07 4.05 7.6442E+00 6.7120E-14 7.29

Table 4. The norms ‖Eûh − Ud‖, ‖Ef̂h‖ and J (ûh, p̂h, f̂h)
when h = 1/16,M = 4096

δ ‖Eûh −Ud‖ ‖Ef̂h‖ J (ûh, p̂h, f̂h)

1 1.2801E-01 2.3835E-03 8.1956E-03
10−3 9.4946E-02 1.7442E+00 6.0286E-03
10−6 9.0874E-04 7.3461E+00 2.7395E-05
10−9 5.2029E-06 7.5423E+00 2.8456E-08
10−12 4.5752E-06 7.5433E+00 3.8917E-11
10−15 4.5747E-06 7.5387E+00 1.0492E-11

where

u1 =
d

dy
φ(x)φ(y) and u2 = − d

dx
φ(x)φ(y)
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Table 5. The norms ‖Eûh − Ud‖, ‖Ef̂h‖ and J (ûh, p̂h, f̂h)
with convergence rate for δ = 10−15

h M ‖Eûh −Ud‖ ‖Ef̂h‖ J (ûh, p̂h, f̂h)

1/4 16 1.1567E-03 7.2294E+00 6.6779E-07
1/8 256 7.6032E-05 3.93 7.4728E+00 2.8904E-09 7.85
1/16 4096 4.5747E-06 4.05 7.5016E+00 1.0492E-11 8.11
1/32 65536 2.7638E-07 4.05 7.5800E+00 6.6921E-14 7.29

and

φ(z) = (1− z)2(1− cos(πz)).

First, we consider the control problem of deterministic Stokes equations.
Since EẆ = 0 and the problem is linear, (Eu,Ep,Ef) is the optimal solution of
the deterministic control problem of the Stokes equations without white noise
which is the optimal solution of the expectation of problem (1) and (2). Thus,
we want to seek (u, p, f) which satisfies the minimization problem: minimize
the functional

(15) JD(u, p, f) =
1

2

∫
|u−Ud|2 dx+

δ

2

∫
|f |2 dx

subject to the steady-state Stokes equations:

−∆u +∇p = f in Ω,

∇ · u = 0 in Ω,(16)

u = 0 on ∂Ω.

As shown in Table 1 and Table 2, one can see that the L2 error ‖u −Ud‖
and cost JD(u, p, f) go to zero as δ goes to zero in each case h = 1/16 and
h = 1/32.

For the case δ = 10−15, Table 3 shows the numerical results with the con-
vergence rates.

Before solving the optimal control problem for the stochastic case, we present
some random velocities with white noise and the target velocity Ud in Figure 1.
We want to control these random velocities to be the target velocity Ud. We
set σ = 1. The numerical algorithm consists of three steps.

Step 1 For m = 1, . . . ,M , generate samples Ẇm
h =

∑
T∈Th

|T |− 1
2 ξmT χT (x), of

discretized white noise Ẇh by generating samples {ξmT }T∈Th
of {ξT }T∈Th

where M is the sample size;
Step 2 For m = 1, . . . ,M , solve (10), with Ẇh replaced by Ẇm

h , to obtain

the approximate solutions (ûmh , p̂
m
h , v̂

m
h , q̂

m
h , f̂

m
h ) of (ûh, p̂h, v̂h, q̂h, f̂h)

by the finite element method;
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Figure 1. Different kinds of random velocities of stochas-
tic Stokes equations with white noise and the target velocity
Ud(bottom right)

Step 3 Evaluate statistics E(v(ûh, p̂h, v̂h, q̂h, f̂h)) using the Monte Carlo meth-
od:

E(v(ûh, p̂h, v̂h, q̂h, f̂h)) ≈ 1

M

M∑
m=1

v(ûmh , p̂
m
h , v̂

m
h , q̂

m
h , f̂

m
h ).

We first discover, as shown in Figure 2, that the variance/standard deviation
of the velocity u = (u1, u2) is quite small (in the order of 10−3), which indicates
that we can perform Monte Carlo simulations with relatively small sample sizes.

In Table 4, we can see that the L2 error ‖Eûh −Ud‖ and cost J (ûh, p̂h, f̂h)
also go to zero as δ goes to zero in case the grid size h = 1/16 and the sample
size M = 4096. In comparison with Table 1, the values converge alike.

In Table 5, we list the L2 errors and convergence rates of ‖Eûh −Ud‖ and

cost J (ûh, p̂h, f̂h) when h = 1/16,M = 4096. We get the same convergence
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Figure 2. Approximate standard deviation of uncontrolled
velocity u = (u1, u2) when h = 1/16, sample size M = 4096
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Figure 3. Target veolicty Ud(top), controlled velocities Euh
for different values of δ; δ = 10−3, 10−6, 10−9, 10−12(from top
to bottom and left to right) when M = 4096 and h = 1/16

rates as Table 3. We use the Monte Carlo simulations here in order to verify
that sufficient number of samples have been used.
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In Figure 3, we display the target velocity and approximate velocities for
δ = 10−3, 10−6, 10−9, 10−12 when h = 1/16 is fixed.
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