1 |
Z. Cai and G. G. Roussas, Berry-Esseen bounds for smooth estimator of a distribution function under association, First NIU Symposium on Statistical Sciences (De Kalb, IL, 1996). J. Nonparametr. Statist. 11 (1999), no. 1-3, 79-106
DOI
ScienceOn
|
2 |
K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), no. 1, 286-295
DOI
|
3 |
H.-Y. Liang and B.-Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, J. Multivariate Anal. 95 (2005), no. 2, 227-245
DOI
ScienceOn
|
4 |
G. G. Roussas, Asymptotic normality of the kernel estimate of a probability density function under association, Statist. Probab. Lett. 50 (2000), no. 1, 1-12
DOI
ScienceOn
|
5 |
Q.-M. Shao and C. Su, The law of the iterated logarithm for negatively associated random variables, Stochastic Process. Appl. 83 (1999), no. 1, 139-148
DOI
ScienceOn
|
6 |
M. H. Chen, Z. Ren, and S. Hu, Strong consistency of a class of estimators in a partial linear model, Acta Math. Sinica (Chin. Ser.) 41 (1998), no. 2, 429-438
|
7 |
H.-Y. Liang and J.-I. Baek, Weighted sums of negatively associated random variables, Aust. N. Z. J. Stat. 48 (2006), no. 1, 21-31
DOI
ScienceOn
|
8 |
K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm. Statist. A-Theory Methods 10 (1981), no. 12, 1183-1196
DOI
ScienceOn
|
9 |
A. Antoniadis, G. Gregoire, and I. W. McKeague, Wavelet methods for curve estimation, J. Amer. Statist. Assoc. 89 (1994), no. 428, 1340-1353
DOI
|
10 |
J.-I. Baek, T.-S. Kim, and H.-Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342
DOI
ScienceOn
|
11 |
Z. J. Chen, H. Y. Liang, and Y. F. Ren, Strong consistency of estimators in a heteroscedastic model under NA samples, Tongji Daxue Xuebao Ziran Kexue Ban 31 (2003), no. 8, 1001-1005
|
12 |
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Density estimation by wavelet thresholding, Ann. Statist. 24 (1996), no. 2, 508-539
DOI
|
13 |
T. Gasser and H. Muller, Smoothing techniques for curve estimation, Proceedings of a Workshop held in Heidelberg, April 2-4, 1979. Edited by Th. Gasser and M. Rosenblatt. Lecture Notes in Mathematics, 757. Springer, Berlin, 1979
|
14 |
A. A. Georgiev, Consistent nonparametric multiple regression: the fixed design case, J. Multivariate Anal. 25 (1988), no. 1, 100-110
DOI
|
15 |
P. Hall and P. Patil, On wavelet methods for estimating smooth functions, Bernoulli 1 (1995), no. 1-2, 41-58
DOI
|
16 |
H.-Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), no. 4, 317-325
DOI
ScienceOn
|
17 |
G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291
DOI
|
18 |
G. G. Walter, Wavelets and other orthogonal systems with applications, CRC Press, Boca Raton, FL, 1994
|
19 |
Q.-M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), no. 2, 343-356
DOI
|
20 |
Q. H. Wang, Some convergence properties of weighted kernel estimators of regression functions under random censorship, Acta Math. Appl. Sinica 19 (1996), no. 3, 338-350
|
21 |
H.-Y. Liang, D. Zhang, and B. Lu, Wavelet estimation in nonparametric model under martingale difference errors, Appl. Math. J. Chinese Univ. Ser. B 19 (2004), no. 3, 302-310
DOI
|
22 |
H. Liang, L. Zhu, and Y. Zhou, Asymptotically efficient estimation based on wavelet of expectation value in a partial linear model, Comm. Statist. Theory Methods 28 (1999), no. 9, 2045-2055
DOI
|
23 |
D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, New York-Berlin, 1970
|
24 |
W. M. Qian and G. X. Cai, The strong convergencerate of wavelet estimator in partially models, Chinese Sci. A29 (1999), 233-240
|
25 |
W. M. Qian, G. X. Chai, and F. Y. Jiang, The wavelet estimation of error variance for semiparametric regression models, Chinese Ann. Math. Ser. A 21 (2000), no. 3, 341-350
|
26 |
G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50
DOI
ScienceOn
|
27 |
X. Zhou and J. You, Wavelet estimation in varying-coefficient partially linear regression models, Statist. Probab. Lett. 68 (2004), no. 1, 91-104
DOI
ScienceOn
|
28 |
G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), no. 1, 152-173
DOI
ScienceOn
|
29 |
L. G. Xue, Strong uniform convergence rates of wavelet estimates of regression function under complete and censored data, Acta Math. Appl. Sin. 25 (2002), no. 3, 430-438
|